The interaction between the nervous system and the stomatognathic system: from development to diseases

The interaction between the nervous system and the stomatognathic system: from development to diseases

  • Khan, M. T., Verma, S. K., Maheshwari, S., Zahid, S. N. & Chaudhary, P. K. Neuromuscular dentistry: Occlusal diseases and posture. J. Oral. Biol. Craniofac. Res. 3, 146–150 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sandoval-Munoz, C. P. & Haidar, Z. S. Neuro-Muscular Dentistry: the “diamond” concept of electro-stimulation potential for stomato-gnathic and oro-dental conditions. Head. Face Med 17, 16 (2021).

    Google Scholar 

  • Wang, G., Song, Z., Wang, J. & Qiu, C. Neuro-stomatology: an emerging inter-discipline worthy of attention. J. Chongqing Med. Univ. 46, 858–862 (2021).

    Google Scholar 

  • Minoux, M. et al. Gene bivalency at Polycomb domains regulates cranial neural crest positional identity. Science 355, 11 (2017).

    Google Scholar 

  • Bataille, C. et al. Different sympathetic pathways control the metabolism of distinct bone envelopes. Bone 50, 1162–1172 (2012).

    PubMed 

    Google Scholar 

  • Nowinski, W. L. 3D Atlas of the brain, Head and Neck in 2953 pieces. Neuroinformatics 15, 395–400 (2017).

    PubMed 

    Google Scholar 

  • Shoja, M. M. et al. Anastomoses between lower cranial and upper cervical nerves: a comprehensive review with potential significance during skull base and neck operations, Part II: glossopharyngeal, vagus, accessory, and hypoglossal nerves and cervical spinal nerves 1-4. Clin. Anat. 27, 131–144 (2014).

    PubMed 

    Google Scholar 

  • Moss, M. L. An introduction to the neurobiology of oro-facial growth. Acta Biotheor. 21, 236–259 (1972).

    PubMed 

    Google Scholar 

  • Dierssen, M. Down syndrome: the brain in trisomic mode. Nat. Rev. Neurosci. 13, 844–858 (2012).

    PubMed 

    Google Scholar 

  • Messiaen, L. et al. Clinical and mutational spectrum of neurofibromatosis type 1-like syndrome. JAMA J. Am. Med. Assoc. 302, 2111–2118 (2009).

    Google Scholar 

  • Yamanaka, S. et al. Circulatory CNP rescues craniofacial hypoplasia in Achondroplasia. J. Dent. Res. 96, 1526–1534 (2017).

    PubMed 

    Google Scholar 

  • Lv, X., Gao, F. & Cao, X. Skeletal interoception in bone homeostasis and pain. Cell Metab. 34, 1914–1931 (2022).

    PubMed 

    Google Scholar 

  • Cooper, R. R. Nerves in cortical bone. Science 160, 327–328 (1968).

    PubMed 

    Google Scholar 

  • Hohmann, E. L., Elde, R. P., Rysavy, J. A., Einzig, S. & Gebhard, R. L. Innervation of periosteum and bone by sympathetic vasoactive intestinal peptide-containing nerve fibers. Science 232, 868–871 (1986).

    PubMed 

    Google Scholar 

  • Dimitri, P. & Rosen, C. The central nervous system and bone metabolism: an evolving story. Calcif. Tissue Int. 100, 476–485 (2017).

    PubMed 

    Google Scholar 

  • Elefteriou, F. Impact of the autonomic nervous system on the skeleton. Physiol. Rev. 98, 1083–1112 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wan, Q. Q. et al. Crosstalk between bone and nerves within bone. Adv. Sci. 8, 24 (2021).

    Google Scholar 

  • Fristad, I. Dental innervation: functions and plasticity after peripheral injury. Acta Odontol. Scand. 55, 236–254 (1997).

    PubMed 

    Google Scholar 

  • Kim, S. T. et al. Location of the mandibular canal and the topography of its neurovascular structures. J. Craniofac. Surg. 20, 936–939 (2009).

    PubMed 

    Google Scholar 

  • Renzi, G., Carboni, A., Perugini, M., Giovannetti, F. & Becelli, R. Posttraumatic trigeminal nerve impairment: a prospective analysis of recovery patterns in a series of 103 consecutive facial fractures. J. Oral. Maxillofac. Surg. 62, 1341–1346 (2004).

    PubMed 

    Google Scholar 

  • Tischfield, M. A. et al. Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell 140, 74–87 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Newall, A. R., Orser, R. & Hunt, M. The control of oral secretions in bulbar ALS/MND. J. Neurol. Sci. 139, 43–44 (1996).

    PubMed 

    Google Scholar 

  • Tonomura, S. et al. Intracerebral hemorrhage and deep microbleeds associated with cnm-positive Streptococcus mutans; a hospital cohort study. Sci. Rep. 6, 9 (2016).

    Google Scholar 

  • Liu, X. H. et al. Perineural invasion in adenoid cystic carcinoma of the salivary glands: Where we are and where we need to go. Front. Oncol. 10, 10 (2020).

    Google Scholar 

  • Saletu, A. et al. Controlled clinical and psychometric studies on the relation between periodontitis and depressive mood. J. Clin. Periodontol. 32, 1219–1225 (2005).

    PubMed 

    Google Scholar 

  • Harada, Y. et al. Cathepsin E in neutrophils contributes to the generation of neuropathic pain in experimental autoimmune encephalomyelitis. Pain 160, 2050–2062 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Labosky, P. A. & Kaestner, K. H. The winged helix transcription factor Hfh2 is expressed in neural crest and spinal cord during mouse development. Mech. Dev. 76, 185–190 (1998).

    PubMed 

    Google Scholar 

  • Southard-Smith, E. M., Kos, L. & Pavan, W. J. Sox10 mutation disrupts neural crest development in DOM Hirschsprung mouse model. Nat. Genet 18, 60–64 (1998).

    PubMed 

    Google Scholar 

  • Martik, M. L. & Bronner, M. E. Riding the crest to get a head: neural crest evolution in vertebrates. Nat. Rev. Neurosci. 22, 616–626 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chai, Y. et al. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127, 1671–1679 (2000).

    PubMed 

    Google Scholar 

  • Kulesa, P. M., Bailey, C. M., Kasemeier-Kulesa, J. C. & McLennan, R. Cranial neural crest migration: new rules for an old road. Dev. Biol. 344, 543–554 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gong, S. G. Cranial neural crest: migratory cell behavior and regulatory networks. Exp. Cell Res. 325, 90–95 (2014).

    PubMed 

    Google Scholar 

  • AlSarheed, M. A comparative study of oral health amongst trisomy 21 children living in Riyadh, Saudi Arabia: Part 1 caries, malocclusion, trauma. Saudi. Dent. J. 27, 220–223 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hanookai, D., Nowzari, H., Contreras, A., Morrison, J. L. & Slots, J. Herpesviruses and periodontopathic bacteria in trisomy 21 periodontitis. J. Periodont. 71, 376–384 (2000).

    PubMed 

    Google Scholar 

  • Díaz-Quevedo, A. A., Castillo-Quispe, H. M. L., Atoche-Socola, K. J. & Arriola-Guillén, L. E. Evaluation of the craniofacial and oral characteristics of individuals with Down syndrome: a review of the literature. J. Stomatol Oral. Maxillofac. Surg. 122, 583–587 (2021).

    PubMed 

    Google Scholar 

  • Suri, S., Tompson, B. D. & Atenafu, E. Prevalence and patterns of permanent tooth agenesis in Down syndrome and their association with craniofacial morphology. Angle Orthod. 81, 260–269 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cuoghi, O. A. et al. Prevalence of dental anomalies in permanent dentition of brazilian individuals with down syndrome. Open Dent. J. 10, 469–473 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nuernberg, M. A. A. et al. Periodontal status of individuals with Down syndrome: sociodemographic, behavioural and family perception influence. J. Intellect. Disabil. Res. 63, 1181–1192 (2019).

    PubMed 

    Google Scholar 

  • Lugović-Mihić, L., Pilipović, K., Crnarić, I., Šitum, M. & Duvančić, T. Differential diagnosis of cheilitis – how to classify cheilitis? Acta Clin. Croat. 57, 342–351 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lott, I. T. & Head, E. Dementia in Down syndrome: unique insights for Alzheimer disease research. Nat. Rev. Neurol. 15, 135–147 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ulualp, S. Outcomes of tongue base reduction and lingual tonsillectomy for residual pediatric obstructive sleep apnea after adenotonsillectomy. Int Arch. Otorhinolaryngol. 23, e415–e421 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lammert, M., Friedman, J. M., Kluwe, L. & Mautner, V. F. Prevalence of neurofibromatosis 1 in German children at elementary school enrollment. Arch. Dermatol. 141, 71–74 (2005).

    PubMed 

    Google Scholar 

  • Rasmussen, S. A. & Friedman, J. M. NF1 gene and neurofibromatosis 1. Am. J. Epidemiol. 151, 33–40 (2000).

    PubMed 

    Google Scholar 

  • Singhal, D. et al. Craniofacial neurofibromatosis: treatment of the midface deformity. J. Cranio MaxilloFac. Surg. 42, 595–600 (2014).

    Google Scholar 

  • Cunha, K. S. G., Barboza, E. P., Dias, E. P. & Oliveira, F. M. Neurofibromatosis type I with periodontal manifestation. A case report and literature review. Br. Dent. J. 196, 457–460 (2004).

    PubMed 

    Google Scholar 

  • Ruggieri, M. et al. Unusual form of recurrent giant cell granuloma of the mandible and lower extremities in a patient with neurofibromatosis type 1. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 87, 67–72 (1999).

    PubMed 

    Google Scholar 

  • Friedrich, R. E., Giese, M., Schmelzle, R., Mautner, V. F. & Scheuer, H. A. Jaw malformations plus displacement and numerical aberrations of teeth in neurofibromatosis type 1: a descriptive analysis of 48 patients based on panoramic radiographs and oral findings. J. Cranio MaxilloFac. Surg. 31, 1–9 (2003).

    Google Scholar 

  • Asgary, S. & Aminzadeh, N. Unilateral gingival enlargement in patient with neurofibromatosis type I. N. Y. State Dent. J. 78, 50–53 (2012).

    PubMed 

    Google Scholar 

  • Bongiorno, M. R., Pistone, G. & Arico, M. Manifestations of the tongue in neurofibromatosis type 1. Oral. Dis. 12, 125–129 (2006).

    PubMed 

    Google Scholar 

  • Curtin, J. P. & McCarthy, S. W. Perineural fibrous thickening within the dental pulp in type 1 neurofibromatosis – a case report. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 84, 400–403 (1997).

    PubMed 

    Google Scholar 

  • Takano, T. et al. The effect of parathyroid hormone (1-34) on cyclic AMP level, ornithine decarboxylase activity, and glycosaminoglycan synthesis of chondrocytes from mandibular condylar cartilage, nasal septal cartilage, and spheno-occipital synchondrosis in culture. J. Dent. Res. 66, 84–87 (1987).

    PubMed 

    Google Scholar 

  • Cohen, M. M. Jr Short-limb skeletal dysplasias and craniosynostosis: what do they have in common? Pediatr. Radiol. 27, 442–446 (1997).

    PubMed 

    Google Scholar 

  • Shiang, R. et al. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 78, 335–342 (1994).

    PubMed 

    Google Scholar 

  • Matsushita, T. et al. FGFR3 promotes synchondrosis closure and fusion of ossification centers through the MAPK pathway. Hum. Mol. Genet. 18, 227–240 (2009).

    PubMed 

    Google Scholar 

  • Buchner, K. et al. Trigeminal stimulus menthol masks bitter off-flavor of artificial sweetener acesulfame-K. Foods 11, 12 (2022).

    Google Scholar 

  • Blanton, P. L. & Jeske, A. H. The key to profound local anesthesia – neuroanatomy. J. Am. Dent. Assoc. 134, 753–760 (2003).

    PubMed 

    Google Scholar 

  • Ladizesky, M. G., Cutrera, R. A., Boggio, V., Mautalen, C. & Cardinali, D. P. Effect of unilateral superior cervical ganglionectomy on bone mineral content and density of rat’s mandible. J. Auton. Nerv. Syst. 78, 113–116 (2000).

    PubMed 

    Google Scholar 

  • Wu, Q. Q., Yang, B., Cao, C., Guang, M. K. & Gong, P. Age-dependent impact of inferior alveolar nerve transection on mandibular bone metabolism and the underlying mechanisms. J. Mol. Histol. 47, 579–586 (2016).

    PubMed 

    Google Scholar 

  • Yu, X. J. et al. Expression of neuropeptides and bone remodeling-related factors during periodontal tissue regeneration in denervated rats. J. Mol. Histol. 46, 195–203 (2015).

    PubMed 

    Google Scholar 

  • Wang, L. et al. Locally applied nerve growth factor enhances bone consolidation in a rabbit model of mandibular distraction osteogenesis. J. Orthop. Res. 24, 2238–2245 (2006).

    PubMed 

    Google Scholar 

  • Cherruau, M., Morvan, F. O., Schirar, A. & Saffar, J. L. Chemical sympathectomy-induced changes in TH-, VIP-, and CGRP-immunoreactive fibers in the rat mandible periosteum: Influence on bone resorption. J. Cell. Physiol. 194, 341–348 (2003).

    PubMed 

    Google Scholar 

  • Takeda, S. et al. Leptin regulates bone formation via the sympathetic nervous system. Cell 111, 305–317 (2002).

    PubMed 

    Google Scholar 

  • Li, Y. et al. Biodegradable magnesium combined with distraction osteogenesis synergistically stimulates bone tissue regeneration via CGRP-FAK-VEGF signaling axis. Biomaterials 275, 14 (2021).

    Google Scholar 

  • Azuma, H., Kido, J., Ikedo, D., Kataoka, M. & Nagata, T. Substance P enhances the inhibition of osteoblastic cell differentiation induced by lipopolysaccharide from Porphyromonas gingivalis. J. Periodont. 75, 974–981 (2004).

    PubMed 

    Google Scholar 

  • Elefteriou, F., Campbell, P. & Ma, Y. Control of bone remodeling by the peripheral sympathetic nervous system. Calcif. Tissue Int. 94, 140–151 (2014).

    PubMed 

    Google Scholar 

  • Eimar, H., Tamimi, I., Murshed, M. & Tamimi, F. Cholinergic regulation of bone. J. Musculoskelet. Neuronal Interact. 13, 124–132 (2013).

    PubMed 

    Google Scholar 

  • Bajayo, A. et al. Skeletal parasympathetic innervation communicates central IL-1 signals regulating bone mass accrual. Proc. Natl Acad. Sci. USA 109, 15455–15460 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Khosla, S. Minireview: the OPG/RANKL/RANK system. Endocrinology 142, 5050–5055 (2001).

    PubMed 

    Google Scholar 

  • Kessler, J. A., Bell, W. O. & Black, I. B. Interactions between the sympathetic and sensory innervation of the iris. J. Neurosci. 3, 1301–1307 (1983).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mauprivez, C. et al. Periosteum metabolism and nerve fiber positioning depend on interactions between osteoblasts and peripheral innervation in rat mandible. PloS one 10, e0140848 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiao, K. et al. β2-Adrenergic signal transduction plays a detrimental role in subchondral bone loss of temporomandibular joint in osteoarthritis. Sci. Rep. 5, (2015).

  • Ribeiro, A. B. et al. Carotid sinus nerve stimulation attenuates alveolar bone loss and inflammation in experimental periodontitis. Sci. Rep. 10, 11 (2020).

    Google Scholar 

  • Arredondo, J. et al. Muscarinic acetylcholine receptors regulating cell cycle progression are expressed in human gingival keratinocytes. J. Periodontal. Res. 38, 79–89 (2003).

    PubMed 

    Google Scholar 

  • Nguyen, V. T. et al. Choline acetyltransferase, acetylcholinesterase, and nicotinic acetylcholine receptors of human gingival and esophageal epithelia. J. Dent. Res. 79, 939–949 (2000).

    PubMed 

    Google Scholar 

  • Zoheir, N., Lappin, D. F. & Nile, C. J. Acetylcholine and the alpha 7 nicotinic receptor: a potential therapeutic target for the treatment of periodontal disease? Inflamm. Res. 61, 915–926 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ordovas-Montanes, J. et al. The regulation of immunological processes by peripheral neurons in homeostasis and disease. Trends Immunol. 36, 578–604 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Procaccini, C., Pucino, V., De Rosa, V., Marone, G. & Matarese, G. Neuro-endocrine networks controlling immune system in health and disease. Front Immunol. 5, 143 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, C. H. & Amar, S. Morphometric, histomorphometric, and microcomputed tomographic analysis of periodontal inflammatory lesions in a murine model. J. Periodontol. 78, 1120–1128 (2007).

    PubMed 

    Google Scholar 

  • Yang, Y., Zhang, B., Yang, Y. F., Peng, B. B. & Ye, R. PLGA containing human adipose-derived stem cell-derived extracellular vesicles accelerates the repair of alveolar bone defects via transfer of CGRP. Oxid. Med. Cell. Longev. 2022, 14 (2022).

    Google Scholar 

  • Wang, L. P. et al. Substance P stimulates bone marrow stromal cell osteogenic activity, osteoclast differentiation, and resorption activity in vitro. Bone 45, 309–320 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, T. J. et al. Substance P incorporation in calcium phosphate cement for dental alveolar bone defect restoration. Mater. Sci. Eng. C. Mater. Biol. Appl. 69, 546–553 (2016).

    PubMed 

    Google Scholar 

  • Zhang, Y. B. et al. Local injection of substance P increases bony formation during mandibular distraction osteogenesis in rats. Br. J. Oral. Maxillofac. Surg. 52, 697–702 (2014).

    PubMed 

    Google Scholar 

  • Levi-Montalcini, R. The nerve growth factor 35 years later. Science 237, 1154–1162 (1987).

    PubMed 

    Google Scholar 

  • Wang, L. et al. Nerve growth factor and tyrosine kinase A in human salivary adenoid cystic carcinoma: expression patterns and effects on in vitro invasive behavior. J. Oral. Maxillofac. Surg. 64, 636–641 (2006).

    PubMed 

    Google Scholar 

  • Eppley, B. L., Snyders, R. V., Winkelmann, T. M. & Roufa, D. G. Efficacy of nerve growth factor in regeneration of the mandibular nerve: a preliminary report. J. Oral. Maxillofac. Surg. 49, 61–68 (1991).

    PubMed 

    Google Scholar 

  • Sicard, L. et al. Dental phenotype in Crouzon syndrome: a controlled radiographic study in 22 patients. Arch. Oral. Biol. 131, 105253 (2021).

    PubMed 

    Google Scholar 

  • Kyrkanides, S., Huang, H. & Faber, R. D. Neurologic regulation and orthodontic tooth movement. Front. Oral. Biol. 18, 64–74 (2016).

    PubMed 

    Google Scholar 

  • Beertsen, W., McCulloch, C. A. & Sodek, J. The periodontal ligament: a unique, multifunctional connective tissue. Periodontol 2000 13, 20–40 (1997).

    PubMed 

    Google Scholar 

  • Wang, K. et al. Axin2+ PDL cells directly contribute to new alveolar bone formation in response to orthodontic tension force. J. Dent. Res. 101, 695–703 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Watson, P. A. Function follows form: generation of intracellular signals by cell deformation. FASEB J. 5, 2013–2019 (1991).

    PubMed 

    Google Scholar 

  • Jiang, Y. et al. Mechanosensitive Piezo1 in periodontal ligament cells promotes alveolar bone remodeling during orthodontic tooth movement. Front. Physiol. 12, 767136 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Christensen, O. Mediation of cell volume regulation by Ca2+ influx through stretch-activated channels. Nature 330, 66–68 (1987).

    PubMed 

    Google Scholar 

  • Ei Hsu Hlaing, E., Ishihara, Y., Wang, Z., Odagaki, N. & Kamioka, H. Role of intracellular Ca(2+)-based mechanotransduction of human periodontal ligament fibroblasts. FASEB J. 33, 10409–10424 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Singh, I. J., Herskovits, M. S., Chiego, D. J. Jr. & Klein, R. M. Modulation of osteoblastic activity by sensory and autonomic innervation of bone. Prog. Clin. Biol. Res. 101, 535–551 (1982).

    PubMed 

    Google Scholar 

  • Heyeraas, K. J., Kvinnsland, I., Byers, M. R. & Jacobsen, E. B. Nerve fibers immunoreactive to protein gene product 9.5, calcitonin gene-related peptide, substance P, and neuropeptide Y in the dental pulp, periodontal ligament, and gingiva in cats. Acta Odontol. Scand. 51, 207–221 (1993).

    PubMed 

    Google Scholar 

  • Nishikawa, S. Systemic labeling and visualization of dental sensory nerves by the novel fluorescent marker AM1-43. Anat. Sci. Int. 81, 181–186 (2006).

    PubMed 

    Google Scholar 

  • Harris, J. A. Using c-fos as a neural marker of pain. Brain Res. Bull. 45, 1–8 (1998).

    PubMed 

    Google Scholar 

  • Fujiyoshi, Y., Yamashiro, T., Deguchi, T., Sugimoto, T. & Takano-Yamamoto, T. The difference in temporal distribution of c-Fos immunoreactive neurons between the medullary dorsal horn and the trigeminal subnucleus oralis in the rat following experimental tooth movement. Neurosci. Lett. 283, 205–208 (2000).

    PubMed 

    Google Scholar 

  • Novaes, A. P., da Rocha, M. J. & Leite-Panissi, C. R. Tooth movement activates the central amygdala and the lateral hypothalamus by the magnitude of the force applied. Angle Orthod. 80, 111–115 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Richardson, J. D. & Vasko, M. R. Cellular mechanisms of neurogenic inflammation. J. Pharm. Exp. Ther. 302, 839–845 (2002).

    Google Scholar 

  • Maggi, C. A. Tachykinins and calcitonin gene-related peptide (CGRP) as co-transmitters released from peripheral endings of sensory nerves. Prog. Neurobiol. 45, 1–98 (1995).

    PubMed 

    Google Scholar 

  • O’Hara, A. H., Sampson, W. J., Dreyer, C. W., Pierce, A. M. & Ferguson, I. A. Immunohistochemical detection of nerve growth factor and its receptors in the rat periodontal ligament during tooth movement. Arch. Oral. Biol. 54, 871–878 (2009).

    PubMed 

    Google Scholar 

  • Vandevska-Radunovic, V., Kvinnsland, S. & Kvinnsland, I. H. Effect of experimental tooth movement on nerve fibres immunoreactive to calcitonin gene-related peptide, protein gene product 9.5, and blood vessel density and distribution in rats. Eur. J. Orthod. 19, 517–529 (1997).

    PubMed 

    Google Scholar 

  • Giannopoulou, C., Dudic, A. & Kiliaridis, S. Pain discomfort and crevicular fluid changes induced by orthodontic elastic separators in children. J. Pain. 7, 367–376 (2006).

    PubMed 

    Google Scholar 

  • Kondo, H. et al. Orthodontic tooth movement-activated sensory neurons contribute to enhancing osteoclast activity and tooth movement through sympathetic nervous signalling. Eur. J. Orthod. 44, 404–411 (2022).

    PubMed 

    Google Scholar 

  • Takiguchi, M. et al. Characteristics of mandibular canal branches related to nociceptive marker. J. Dent. Res. 100, 623–630 (2021).

    PubMed 

    Google Scholar 

  • Pramstraller, M., Schincaglia, G. P., Vecchiatini, R., Farina, R. & Trombelli, L. Alveolar ridge dimensions in mandibular posterior regions: a retrospective comparative study of dentate and edentulous sites using computerized tomography data. Surg. Radiol. Anat. 40, 1419–1428 (2018).

    PubMed 

    Google Scholar 

  • Wadu, S. G., Penhall, B. & Townsend, G. C. Morphological variability of the human inferior alveolar nerve. Clin. Anat. 10, 82–87 (1997).

    PubMed 

    Google Scholar 

  • Gangatharan, G., Schneider-Maunoury, S. & Breau, M. A. Role of mechanical cues in shaping neuronal morphology and connectivity. Biol. Cell. 110, 125–136 (2018).

    PubMed 

    Google Scholar 

  • Isomura, E. T. et al. Inferior alveolar nerve regeneration after bifocal distraction osteogenesis in dogs. J. Oral. Maxillofac. Surg. 71, 1810.e1–1811 (2013).

    PubMed 

    Google Scholar 

  • Day, I. N. & Thompson, R. J. Molecular cloning of cDNA coding for human PGP 9.5 protein. A novel cytoplasmic marker for neurones and neuroendocrine cells. FEBS Lett. 210, 157–160 (1987).

    PubMed 

    Google Scholar 

  • McCulloch, C. A., Lekic, P. & McKee, M. D. Role of physical forces in regulating the form and function of the periodontal ligament. Periodontology 24, 56–72 (2000).

    Google Scholar 

  • Ren, Y., Maltha, J. C., Van ‘t Hof, M. A. & Kuijpers-Jagtman, A. M. Optimum force magnitude for orthodontic tooth movement: a mathematic model. Am. J. Orthod. Dentofac. Orthop. 125, 71–77 (2004).

    Google Scholar 

  • Vandevska-Radunovic, V. Neural modulation of inflammatory reactions in dental tissues incident to orthodontic tooth movement. A review of the literature. Eur. J. Orthod. 21, 231–247 (1999).

    PubMed 

    Google Scholar 

  • Caviedes-Bucheli, J. et al. The effect of orthodontic forces on calcitonin gene-related peptide expression in human dental pulp. J. Endod. 37, 934–937 (2011).

    PubMed 

    Google Scholar 

  • Jadun, S., Miller, D. & Renton, T. Orthodontic-related nerve injuries: a review and case series. Br. Dent. J. 229, 244–248 (2020).

    PubMed 

    Google Scholar 

  • Aloe, L., Rocco, M. L., Bianchi, P. & Manni, L. Nerve growth factor: from the early discoveries to the potential clinical use. J. Transl. Med. 10, (2012).

  • Taniguchi, M. et al. Disruption of semaphorin III/D gene causes severe abnormality in peripheral nerve projection. Neuron 19, 519–530 (1997).

    PubMed 

    Google Scholar 

  • Gavazzi, I. Semaphorin-neuropilin-1 interactions in plasticity and regeneration of adult neurons. Cell Tissue Res 305, 275–284 (2001).

    PubMed 

    Google Scholar 

  • Li, J. et al. Modulation of the crosstalk between schwann cells and macrophages for nerve regeneration: a therapeutic strategy based on a multifunctional tetrahedral framework nucleic acids system. Adv. Mater. 34, (2022).

  • Clouston, P. D., Sharpe, D. M., Corbett, A. J., Kos, S. & Kennedy, P. J. Perineural spread of cutaneous head and neck cancer. Its orbital and central neurologic complications. Arch. Neurol. 47, 73–77 (1990).

    PubMed 

    Google Scholar 

  • Lin, J. W., Chen, Y. C., Wen, H. M., Yang, Z. Y. & Zeng, J. S. Weakness of eye closure with central facial paralysis after unilateral hemispheric stroke predicts a worse outcome. J. Stroke Cerebrovasc. Dis. 26, 834–841 (2017).

    PubMed 

    Google Scholar 

  • Hoffmann, D. F., May, M. & Kubal, W. Slowly progressive facial paralysis due to vascular malformation of the brain stem. Am. J. Otol. 11, 357–359 (1990).

    PubMed 

    Google Scholar 

  • McCormick, D. P. Herpes-simplex virus as a cause of Bell’s palsy.1972. Rev. Med. Virol. 10, 285–289 (2000).

    PubMed 

    Google Scholar 

  • Peitersen, E. Bell’s palsy: the spontaneous course of 2,500 peripheral facial nerve palsies of different etiologies. Acta Oto-Laryngol. 122, 4–30 (2002).

    Google Scholar 

  • Finsterer, J. Management of peripheral facial nerve palsy. Eur. Arch. Oto Rhino Laryn. 265, 743–752 (2008).

    Google Scholar 

  • Hohman, M. H. & Hadlock, T. A. Etiology, diagnosis, and management of facial palsy: 2000 Patients at a facial nerve center. Laryngoscope 124, E283–E293 (2014).

    PubMed 

    Google Scholar 

  • Eviston, T. J., Croxson, G. R., Kennedy, P. G. E., Hadlock, T. & Krishnan, A. V. Bell’s palsy: aetiology, clinical features and multidisciplinary care. J. Neurol. Neurosurg. Psychiatry 86, 1356–1361 (2015).

    PubMed 

    Google Scholar 

  • Valls-Solé, J. Facial palsy, postparalytic facial syndrome, and hemifacial spasm. Mov. Disord. 17, S49–S52 (2002).

    PubMed 

    Google Scholar 

  • Yaltho, T. C. & Jankovic, J. The many faces of hemifacial spasm: differential diagnosis of unilateral facial spasms. Mov. Disord. 26, 1582–1592 (2011).

    PubMed 

    Google Scholar 

  • Arseni, C. & Petrovici, I. Persistent tonic facial spasm in brain stem tumours. J. Neurol. Sci. 7, 107–114 (1968).

    PubMed 

    Google Scholar 

  • Nielsen, V. K. Electrophysiology of the facial nerve in hemifacial spasm: ectopic/ephaptic excitation. Muscle Nerve 8, 545–555 (1985).

    PubMed 

    Google Scholar 

  • Luo, F. F., Xu, H., Zhang, M. & Wang, Y. Abnormal regional spontaneous brain activity and its indirect effect on spasm ratings in patients with hemifacial spasm. Front. Neurosci. 14, (2020).

  • Gutmann, L. AAEM minimonograph #37: facial and limb myokymia. Muscle Nerve 14, 1043–1049 (1991).

    PubMed 

    Google Scholar 

  • Wang, A. & Jankovic, J. Hemifacial spasm: clinical findings and treatment. Muscle Nerve 21, 1740–1747 (1998).

    PubMed 

    Google Scholar 

  • Hausser-Hauw, C., Roullet, E., Robert, R. & Marteau, R. Oculo-facio-skeletal myorhythmia as a cerebral complication of systemic Whipple’s disease. Mov. Disord. 3, 179–184 (1988).

    PubMed 

    Google Scholar 

  • Srivanitchapoom, P., Pandey, S. & Hallett, M. Drooling in Parkinson’s disease: a review. Parkinsonism Relat. Disord. 20, 1109–1118 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kamilov, K. P., Kamalova, M. K. & Shokirova, F. A. Biology of mouth cavity in patients with chronic recurrent herpetic stomatitis. Uzbekiston Tibbiet Zh . 5, 5–11 (2018).

    Google Scholar 

  • Donatsky, O. Cell-mediated and humoral immunity against oral streptococci, neisseria, staphylococci, and adult human oral mucosa antigens in recurrent aphthous stomatitis. Scand. J. Dent. Res. 86, 25–34 (1978).

    PubMed 

    Google Scholar 

  • Greenberg, M. S. Herpesvirus infections. Dent. Clin. North Am. 40, 359–368 (1996).

    PubMed 

    Google Scholar 

  • Hodges, G. J. & Johnson, J. M. Adrenergic control of the human cutaneous circulation. Appl. Physiol. Nutr. Metab. 34, 829–839 (2009).

    PubMed 

    Google Scholar 

  • Gardner, W. J. & McCubbin, J. W. Auriculotemporal syndrome; gustatory sweating due to misdirection of regenerated nerve fibers. J. Am. Med. Assoc. 160, 272–277 (1956).

    PubMed 

    Google Scholar 

  • Galli, S. Anatomic and functional bases of Frey’s syndrome: sensitive and sensorial stimulations. Rev. Laryngol. Oto. l Rhinol. 105, 89–91 (1984).

    Google Scholar 

  • Motz, K. M. & Kim, Y. J. Auriculotemporal syndrome (Frey Syndrome). Otolaryngol. Clin. North Am. 49, 501–509 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Freedberg, A. S., Shaw, R. S. & McManus, M. J. The auriculotemporal syndrome. A clinical and pharmacologic study. J. Clin. Invest. 27, 669–676 (1948).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Palmeiro, A. G., Azurara, L., Pimentel, B. & Amaro, C. Case for diagnosis. A transient unilateral face rash upon eating: Frey syndrome. Bras. Dermatol. 98, 108–109 (2023).

    Google Scholar 

  • Caliò, B., Wenning, G. K., Fanciulli, A. & Colosimo, C. Forehead and scalp gustatory sweating after temporomandibular joint surgery: an atypical presentation of Frey’s syndrome. Clin. Auton. Res. (2023).

    Article 
    PubMed 

    Google Scholar 

  • Dewhirst, F. E. et al. The human oral microbiome. J. Bacteriol. 192, 5002–5017 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ihara, M. & Yamamoto, Y. Emerging evidence for pathogenesis of sporadic cerebral small vessel disease. Stroke 47, 554–560 (2016).

    PubMed 

    Google Scholar 

  • Moazzam, A. A., Rajagopal, S. M., Sedghizadeh, P. P., Zada, G. & Habibian, M. Intracranial bacterial infections of oral origin. J. Clin. Neurosci. 22, 800–806 (2015).

    PubMed 

    Google Scholar 

  • Nguyen, I., Urbanczyk, K., Mtui, E. & Li, S. Intracranial CNS infections: a literature review and radiology case studies. Semin. Ultrasound Ct. Mr. 41, 106–120 (2020).

    PubMed 

    Google Scholar 

  • Lee, T. C. et al. Diseases caused by enterovirus 71 infection. Pediatr. Infect. Dis. J. 28, 904–910 (2009).

    PubMed 

    Google Scholar 

  • Ewald, C., Kuhn, S. & Kalff, R. Pyogenic infections of the central nervous system secondary to dental affections-a report of six cases. Neurosurg. Rev. 29, 163–166 (2006). discussion 166-167.

    PubMed 

    Google Scholar 

  • Aarabi, G., Thomalla, G., Heydecke, G. & Seedorf, U. Chronic oral infection: an emerging risk factor of cerebral small vessel disease. Oral. Dis. 25, 710–719 (2019).

    PubMed 

    Google Scholar 

  • Hashioka, S. et al. The possible causal link of periodontitis to neuropsychiatric disorders: More than psychosocial mechanisms. Int. J. Mol. Sci. 20, (2019).

  • Liebig, C., Ayala, G., Wilks, J. A., Berger, D. H. & Albo, D. Perineural invasion in cancer: a review of the literature. Cancer 115, 3379–3391 (2009).

    PubMed 

    Google Scholar 

  • Bjørndal, K. et al. Salivary gland carcinoma in Denmark 1990-2005: a national study of incidence, site and histology. Results of the Danish Head and Neck Cancer Group (DAHANCA). Oral. Oncol. 47, 677–682 (2011).

    PubMed 

    Google Scholar 

  • Sullivan, L. M. & Smee, R. Leptomeningeal carcinomatosis from perineural invasion of a lip squamous cell carcinoma. Australas. Radiol. 50, 262–266 (2006).

    PubMed 

    Google Scholar 

  • Sethi, S., Lu, M., Kapke, A., Benninger, M. S. & Worsham, M. J. Patient and tumor factors at diagnosis in a multi-ethnic primary head and neck squamous cell carcinoma cohort. J. Surg. Oncol. 99, 104–108 (2009).

    PubMed 

    Google Scholar 

  • Fahmy, M. D. et al. Are throat pain and otalgia predictive of perineural invasion in squamous cell carcinoma of the oropharynx? J. Oral. Maxillofac. Surg. 80, 363–371 (2022).

    PubMed 

    Google Scholar 

  • Rahima, B., Shingaki, S., Nagata, M. & Saito, C. Prognostic significance of perineural invasion in oral and oropharyngeal carcinoma. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 97, 423–431 (2004).

    PubMed 

    Google Scholar 

  • Komazaki, Y. et al. Association between malocclusion and headache among 12- to 15-year-old adolescents: a population-based study. Community Dent. Oral. Epidemiol. 42, 572–580 (2014).

    PubMed 

    Google Scholar 

  • De Luca Canto, G., Singh, V., Bigal, M. E., Major, P. W. & Flores-Mir, C. Association between tension-type headache and migraine with sleep bruxism: a systematic review. Headache 54, 1460–1469 (2014).

    PubMed 

    Google Scholar 

  • Lambourne, C., Lampasso, J., Buchanan, W. C. Jr., Dunford, R. & McCall, W. Malocclusion as a risk factor in the etiology of headaches in children and adolescents. Am. J. Orthod. Dentofac. Orthop. 132, 754–761 (2007).

    Google Scholar 

  • Hinotsume, S. The difference from the point of view of masticatory function between normal occlusion and crowding, using Hellman’s dental stage. Shoni Shikagaku Zasshi 26, 535–555 (1988).

    PubMed 

    Google Scholar 

  • Hinotsume, S. et al. Occlusal development in children from the functional viewpoint. 4. Amount of masticatory muscle action in children with tooth crowding. Shoni Shikagaku Zasshi 24, 415–427 (1986).

    PubMed 

    Google Scholar 

  • Burnett, C. A., Fartash, L., Murray, B. & Lamey, P. J. Masseter and temporalis muscle EMG levels and bite force in migraineurs. Headache 40, 813–817 (2000).

    PubMed 

    Google Scholar 

  • Gonçalves, D. A. et al. Temporomandibular disorders are differentially associated with headache diagnoses: a controlled study. Clin. J. Pain. 27, 611–615 (2011).

    PubMed 

    Google Scholar 

  • Khoury, S., Carra, M. C., Huynh, N., Montplaisir, J. & Lavigne, G. J. Sleep bruxism-tooth grinding prevalence, characteristics and familial aggregation: a large cross-sectional survey and polysomnographic validation. Sleep 39, 2049–2056 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Molina, O. F., Peixoto, M. G., Eid, N. L. M., Aquilino, R. N. & Rank, R. C. I. C. Headache and bruxing behavior types in craniomandibular disorders (CMDs) patients. Rev. Neurocien. 19, 449–457 (2011).

    Google Scholar 

  • Fernández-de-las-Peñas, C., Cuadrado, M. L., Arendt-Nielsen, L., Simons, D. G. & Pareja, J. A. Myofascial trigger points and sensitization: an updated pain model for tension-type headache. Cephalalgia 27, 383–393 (2007).

    PubMed 

    Google Scholar 

  • Margaretten, M. Neurologic manifestations of primary Sjögren syndrome. Rheum. Dis. Clin. North Am. 43, 519–529 (2017).

    PubMed 

    Google Scholar 

  • Sjögren, H. On knowledge of the keratoconjunctivitis sicca. VII. The sicca syndrome-an autoimmune disease. Acta Ophthalmol. 46, 201–206 (1968).

    Google Scholar 

  • Hamburger, J. Orofacial manifestations in patients with inflammatory rheumatic diseases. Best. Pract. Res. Clin. Rheumatol. 30, 826–850 (2016).

    PubMed 

    Google Scholar 

  • Zanin, M. C., Garcia, D. M., Rocha, E. M. & de Felício, C. M. Orofacial motor functions and temporomandibular disorders in patients with Sjögren’s Syndrome. Arthritis Care Res. 72, 1057–1065 (2020).

    Google Scholar 

  • Schiffman, E. et al. Diagnostic criteria for temporomandibular disorders (DC/TMD) for clinical and research applications: recommendations of the international RDC/TMD consortiumnetwork* and Orofacial Pain Special Interest Group†. J. Oral. Facial Pain. Headache 28, 6–27 (2014).

    PubMed 

    Google Scholar 

  • Rossi, R. & Valeria Saddi, M. Subacute aseptic meningitis as neurological manifestation of primary Sjögren’s syndrome. Clin. Neurol. Neurosurg. 108, 688–691 (2006).

    PubMed 

    Google Scholar 

  • Chen, Y. W. et al. Sjogren’s syndrome with acute cerebellar ataxia and massive lymphadenopathy: a case report. Acta Neurol. Taiwan. 22, 81–86 (2013).

    PubMed 

    Google Scholar 

  • Wang, Z. Z. et al. Risk of dementia or Parkinson’s disease in the presence of Sjögren’s syndrome: a systematic review and meta-analysis. Front. Integr. Neurosci. 16, (2022).

  • Westhoff, G., Dörner, T. & Zink, A. Fatigue and depression predict physician visits and work disability in women with primary Sjögren’s syndrome: results from a cohort study. Rheumatology 51, 262–269 (2012).

    PubMed 

    Google Scholar 

  • 2022 Alzheimer’s disease facts and figures. Alzheimers Dement. 18, 700–789 (2022).

  • Long, J. M. & Holtzman, D. M. Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179, 312–339 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, C. K., Wu, Y. T. & Chang, Y. C. Association between chronic periodontitis and the risk of Alzheimer’s disease: a retrospective, population-based, matched-cohort study. Alzheimers Res. Ther. 9, (2017).

  • Dominy, S. S. et al. Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci. Adv. 5, (2019).

  • Martande, S. S. et al. Periodontal health condition in patients with Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen. 29, 498–502 (2014).

    PubMed 

    Google Scholar 

  • Delwel, S. et al. Oral health and orofacial pain in older people with dementia: a systematic review with focus on dental hard tissues. Clin. Oral. Investig. 21, 17–32 (2017).

    PubMed 

    Google Scholar 

  • Maldonado, A., Laugisch, O., Bürgin, W., Sculean, A. & Eick, S. Clinical periodontal variables in patients with and without dementia-a systematic review and meta-analysis. Clin. Oral. Investig. 22, 2463–2474 (2018).

    PubMed 

    Google Scholar 

  • Gao, S. S., Chu, C. H. & Young, F. Y. F. Oral health and care for elderly people with Alzheimer’s disease. Int. J. Environ. Res. Public Health. 17, (2020).

  • Aragón, F. et al. Oral health in Alzheimer’s disease: a multicenter case-control study. Clin. Oral. Investig. 22, 3061–3070 (2018).

    PubMed 

    Google Scholar 

  • Delwel, S. et al. Oral hygiene and oral health in older people with dementia: a comprehensive review with focus on oral soft tissues. Clin. Oral. Investig. 22, 93–108 (2018).

    PubMed 

    Google Scholar 

  • Marchini, L., Ettinger, R., Caprio, T. & Jucan, A. Oral health care for patients with Alzheimer’s disease: an update. Spec. Care Dent. 39, 262–273 (2019).

    Google Scholar 

  • Fonseca-Ornelas, L. et al. Parkinson-causing mutations in LRRK2 impair the physiological tetramerization of endogenous α-synuclein in human neurons. NPJ Parkinsons Dis. 8, (2022).

  • Chen, C. K., Wu, Y. T. & Chang, Y. C. Periodontal inflammatory disease is associated with the risk of Parkinson’s disease: a population-based retrospective matched-cohort study. PeerJ. 5, (2017).

  • Van Stiphout, M. A. E., Marinus, J., van Hilten, J. J., Lobbezoo, F. & de Baat, C. Oral health of Parkinson’s disease patients: a case-control study. Parkinsons Dis. 2018, (2018).

  • Silva, P. F. et al. Impact in oral health and the prevalence of temporomandibular disorder in individuals with Parkinson’s disease. J. Phys. Ther. Sci. 27, 887–891 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lobbezoo, F. & Naeije, M. Dental implications of some common movement disorders: a concise review. Arch. Oral. Biol. 52, 395–398 (2007).

    PubMed 

    Google Scholar 

  • Suttrup, I. & Warnecke, T. Dysphagia in Parkinson’s disease. Dysphagia 31, 24–32 (2016).

    PubMed 

    Google Scholar 

  • Ribeiro, G. R., Campos, C. H. & Rodrigues Garcia, R. C. M. Parkinson’s disease impairs masticatory function. Clin. Oral. Investig. 21, 1149–1156 (2017).

    PubMed 

    Google Scholar 

  • Shamim, T. The psychosomatic disorders pertaining to dental practice with revised working type classification. Korean J. Pain. 27, 16–22 (2014).

    PubMed 

    Google Scholar 

  • Gupta, O. P., Tiwarri, O. S., Salimeno, T. Jr. & Allen, D. R. Neuropsychiatric disorders and periodontal disease. Ann. Dent. 52, 28–33 (1993).

    PubMed 

    Google Scholar 

  • Monteiro da Silva, A. M., Oakley, D. A., Newman, H. N., Nohl, F. S. & Lloyd, H. M. Psychosocial factors and adult onset rapidly progressive periodontitis. J. Clin. Periodontol. 23, 789–794 (1996).

    PubMed 

    Google Scholar 

  • Moss, M. E. et al. Exploratory case-control analysis of psychosocial factors and adult periodontitis. J. Periodontol. 67, 1060–1069 (1996).

    PubMed 

    Google Scholar 

  • Dumitrescu, A. L. Depression and inflammatory periodontal disease considerations-An interdisciplinary approach. Front. Psychol. 7, (2016).

  • Dworkin, S. F. & LeResche, L. Research diagnostic criteria for temporomandibular disorders: review, criteria, examinations and specifications, critique. J. Craniomandib. Disord. 6, 301–355 (1992).

    PubMed 

    Google Scholar 

  • Lora, V. R., Canales Gde, L., Gonçalves, L. M., Meloto, C. B. & Barbosa, C. M. Prevalence of temporomandibular disorders in postmenopausal women and relationship with pain and HRT. Braz. Oral. Res. 30, (2016).

  • Dworkin, S. F. et al. Reliability, validity, and clinical utility of the research diagnostic criteria for Temporomandibular Disorders Axis II Scales: depression, non-specific physical symptoms, and graded chronic pain. J. Orofac. Pain. 16, 207–220 (2002).

    PubMed 

    Google Scholar 

  • De La Torre Canales, G. et al. Prevalence of psychosocial impairment in temporomandibular disorder patients: a systematic review. J. Oral. Rehabil. 45, 881–889 (2018).

    PubMed 

    Google Scholar 

  • Fillingim, R. B. et al. Psychological factors associated with development of TMD: the OPPERA prospective cohort study. J. Pain. 14, T75–T90 (2013).

    PubMed 

    Google Scholar 

  • Staniszewski, K. et al. Temporomandibular disorders related to stress and HPA-axis regulation. Pain. Res Manag. 2018, 7020751 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jo, K. B. et al. Association of pain intensity, pain-related disability, and depression with hypothalamus-pituitary-adrenal axis function in female patients with chronic temporomandibular disorders. Psychoneuroendocrinology 69, 106–115 (2016).

    PubMed 

    Google Scholar 

  • Jasim, H., Ghafouri, B., Gerdle, B., Hedenberg-Magnusson, B. & Ernberg, M. Altered levels of salivary and plasma pain related markers in temporomandibular disorders. J. Headache Pain. 21, (2020).

  • Chen, Y. W. et al. Significantly lower nerve growth factor levels in patients with major depressive disorder than in healthy subjects: a meta-analysis and systematic review. Neuropsychiatr. Dis. Treat. 11, 925–933 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kishi, T., Yoshimura, R., Ikuta, T. & Iwata, N. Brain-derived neurotrophic factor and major depressive disorder: evidence from meta-analyses. Front. Psychiatry 8, 308 (2017).

    PubMed 

    Google Scholar 

  • Staniszewski, K., Ronold, E. H., Hammar, Å. & Rosén, A. Neurocognitive functioning in patients with painful temporomandibular disorders. J. Pain. Res 16, 2015–2025 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yin, Y. et al. The neuro-pathophysiology of temporomandibular disorders-related pain: a systematic review of structural and functional MRI studies. J. Headache Pain. 21, 78 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Won, S. Y. et al. Neuroanastomosis and the innervation territory of the mental nerve. Clin. Anat. 27, 598–602 (2014).

    PubMed 

    Google Scholar 

  • Cruccu, G. et al. Trigeminal neuralgia: new classification and diagnostic grading for practice and research. Neurology 87, 220–228 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cruccu, G., Di Stefano, G. & Truini, A. Trigeminal neuralgia. N. Engl. J. Med. 383, 754–762 (2020).

    PubMed 

    Google Scholar 

  • Olesen, J. Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Cephalalgia 38, 1–211 (2018).

    Google Scholar 

  • Siqueira, J. T. et al. Clinical study of patients with persistent orofacial pain. Arq. Neuropsiquiatr. 62, 988–996 (2004).

    PubMed 

    Google Scholar 

  • Burchiel, K. J. Abnormal impulse generation in focally demyelinated trigeminal roots. J. Neurosurg. 53, 674–683 (1980).

    PubMed 

    Google Scholar 

  • Waxman, S. G. & Brill, M. H. Conduction through demyelinated plaques in multiple sclerosis: computer simulations of facilitation by short internodes. J. Neurol. Neurosurg. Psychiatry 41, 408–416 (1978).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Teixeira, M. J., de Siqueira, S. R. & Bor-Seng-Shu, E. Glossopharyngeal neuralgia: neurosurgical treatment and differential diagnosis. Acta Neurochir. 150, 471–475 (2008).

    PubMed 

    Google Scholar 

  • Hamada, O. et al. A patient with vertebral artery dissection who initially suffered from pharyngeal pain. No Shinkei Geka 41, 1081–1085 (2013).

    PubMed 

    Google Scholar 

  • Nurmikko, T. J. Chapter 38 Trigeminal neuralgia and other facial neuralgias. Handb. Clin. Neurol. 81, 573–596 (2006).

    PubMed 

    Google Scholar 

  • Romero-Reyes, M. & Uyanik, J. M. Orofacial pain management: current perspectives. J. Pain. Res. 7, 99–115 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kapnadak, S. G., Mikolaenko, I., Enfield, K., Gress, D. R. & Nathan, B. R. Ondine’s curse with accompanying trigeminal and glossopharyngeal neuralgia secondary to medullary telangiectasia. Neurocrit. Care 12, 395–399 (2010).

    PubMed 

    Google Scholar 

  • Honey, C. M. et al. Concurrent glossopharyngeal neuralgia and hemi-laryngopharyngeal spasm (HeLPS): a case report and a review of the literature. Neurosurgery 87, E573–E577 (2020).

    PubMed 

    Google Scholar 

  • Garretson, H. D. & Elvidge, A. R. Glossopharyngeal neuralgia with asystole and seizures. Arch. Neurol. 8, 26–31 (1963).

    PubMed 

    Google Scholar 

  • Boghosian-Sell, L. et al. Molecular mapping of the Edwards syndrome phenotype to two noncontiguous regions on chromosome 18. Am. J. Hum. Genet 55, 476–483 (1994).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Balasundaram, P. & Avulakunta, I. D. Edwards sy ndrome (StatPearls. Publishing, 2023).

  • Maheshwari, M. et al. PTPN11 mutations in Noonan syndrome type I: detection of recurrent mutations in exons 3 and 13. Hum. Mutat. 20, 298–304 (2002).

    PubMed 

    Google Scholar 

  • Tartaglia, M. et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat. Genet 29, 465–468 (2001).

    PubMed 

    Google Scholar 

  • Tartaglia, M. et al. PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. Am. J. Hum. Genet 70, 1555–1563 (2002).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Roberts, A. E., Allanson, J. E., Tartaglia, M. & Gelb, B. D. Noonan syndrome. Lancet 381, 333–342 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pérez Jurado, L. A., Peoples, R., Kaplan, P., Hamel, B. C. & Francke, U. Molecular definition of the chromosome 7 deletion in Williams syndrome and parent-of-origin effects on growth. Am. J. Hum. Genet 59, 781–792 (1996).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kozel, B. A. et al. Williams syndrome. Nat. Rev. Dis. Prim. 7, 42 (2021).

    PubMed 

    Google Scholar 

  • Butler, M. G. Prader-Willi syndrome: current understanding of cause and diagnosis. Am. J. Med Genet 35, 319–332 (1990).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Butler, M. G., Miller, J. L. & Forster, J. L. Prader-Willi syndrome – clinical genetics, diagnosis and treatment approaches: an update. Curr. Pediatr. Rev. 15, 207–244 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bhattacharjee, K. et al. Crouzon syndrome and the eye: an overview. Indian J. Ophthalmol. 70, 2346–2354 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kobayashi, Y., Ogura, K., Hikita, R., Tsuji, M. & Moriyama, K. Craniofacial, oral, and cervical morphological characteristics in Japanese patients with Apert syndrome or Crouzon syndrome. Eur. J. Orthod. 43, 36–44 (2021).

    PubMed 

    Google Scholar 

  • Tan, A. P. & Mankad, K. Apert syndrome: magnetic resonance imaging (MRI) of associated intracranial anomalies. Childs Nerv. Syst. 34, 205–216 (2018).

    PubMed 

    Google Scholar 

  • Yu, K., Herr, A. B., Waksman, G. & Ornitz, D. M. Loss of fibroblast growth factor receptor 2 ligand-binding specificity in Apert syndrome. Proc. Natl Acad. Sci. USA 97, 14536–14541 (2000).

    PubMed 
    PubMed Central 

    Google Scholar 

  • White, S. M. et al. Growth, behavior, and clinical findings in 27 patients with Kabuki (Niikawa-Kuroki) Syndrome. Am. J. Med. Genet. A. 127A, 118–127 (2004).

    PubMed 

    Google Scholar 

  • Porntaveetus, T. et al. Expanding the oro-dental and mutational spectra of Kabuki Syndrome and expression of KMT2D and KDM6A in human tooth germs. Int. J. Biol. Sci. 14, 381–389 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dentici, M. et al. Clinical spectrum of Kabuki-like syndrome caused by HNRNPK haploinsufficiency. Case report and literature review. Eur. J. Hum. Genet. 26, 477–477 (2018).

    Google Scholar 

  • Miller, G. Neurological disorders – the mystery of the missing smile. Science 316, 826–827 (2007).

    PubMed 

    Google Scholar 

  • Verzijl, H., van der Zwaag, B., Cruysberg, J. R. M. & Padberg, G. W. Mobius syndrome redefined – a syndrome of rhombencephalic maldevelopment. Neurology 61, 327–333 (2003).

    PubMed 

    Google Scholar 

  • Lee, S. & Moon, C.-H. Orthodontic treatment in a patient with Moebius syndrome: a case report. Korean J. Orthod. 52, 451–460 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Picciolini, O. et al. Moebius syndrome: clinical features, diagnosis, management and early intervention. Ital. J. Pediatr. 42, 7 (2016).

    Google Scholar 

  • Bucher, F., Fricke, J., Neugebauer, A., Cursiefen, C. & Heindl, L. M. Ophthalmological manifestations of Parry-Romberg syndrome. Surv. Ophthalmol. 61, 693–701 (2016).

    PubMed 

    Google Scholar 

  • Vaienti, L., Soresina, M. & Menozzi, A. Parascapular free flap and fat grafts: combined surgical methods in morphological restoration of hemifacial progressive atrophy. Plast. Reconstr. Surg. 116, 699–711 (2005).

    PubMed 

    Google Scholar 

  • Schultz, K. P., Dong, E., Truong, T. A. & Maricevich, R. S. Parry Romberg syndrome. Clin. Plast. Surg. 46, 231–237 (2019).

    PubMed 

    Google Scholar 

  • Tristani-Firouzi, M. et al. Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J. Clin. Invest. 110, 381–388 (2002).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Andelfinger, G. et al. KCNJ2 mutation results in Andersen syndrome with sex-specific cardiac and skeletal muscle phenotypes. Am. J. Hum. Genet. 71, 663–668 (2002).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sansone, V. & Tawil, R. Management and treatment of andersen-tawil syndrome (ATS). Neurotherapeutics 4, 233–237 (2007).

    PubMed 

    Google Scholar 

  • Elefteriou, F. et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434, 514–520 (2005).

    PubMed 

    Google Scholar 

  • Inoue, H., Kondo, A. & Togari, A. Activation of the peripheral sympathetic nervous system increased the expression of cyclooxygenase-2 (COX-2) mRNA in mouse calvaria. Neurosci. Lett. 338, 37–40 (2003).

    PubMed 

    Google Scholar 

  • Rahman, S., Dobson, P. R. M., Bunning, R. A. D., Russell, R. G. G. & Brown, B. L. The regulation of connective tissue metabolism by vasoactive intestinal polypeptide. Regul. Pept. 37, 111–121 (1992).

    PubMed 

    Google Scholar 

  • Persson, E. & Lerner, U. H. The neuropeptide VIP potentiates IL-6 production induced by proinflammatory osteotropic cytokines in calvarial osteoblasts and the osteoblastic cell line MC3T3-E1. Biochem. Biophys. Res. Commun. 335, 705–711 (2005).

    PubMed 

    Google Scholar 

  • Mrak, E. et al. Calcitonin gene-related peptide (CGRP) inhibits apoptosis in human osteoblasts by β-catenin stabilization. J. Cell Physiol. 225, 701–708 (2010).

    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *