Khan, M. T., Verma, S. K., Maheshwari, S., Zahid, S. N. & Chaudhary, P. K. Neuromuscular dentistry: Occlusal diseases and posture. J. Oral. Biol. Craniofac. Res. 3, 146–150 (2013).
Google Scholar
Sandoval-Munoz, C. P. & Haidar, Z. S. Neuro-Muscular Dentistry: the “diamond” concept of electro-stimulation potential for stomato-gnathic and oro-dental conditions. Head. Face Med 17, 16 (2021).
Wang, G., Song, Z., Wang, J. & Qiu, C. Neuro-stomatology: an emerging inter-discipline worthy of attention. J. Chongqing Med. Univ. 46, 858–862 (2021).
Minoux, M. et al. Gene bivalency at Polycomb domains regulates cranial neural crest positional identity. Science 355, 11 (2017).
Bataille, C. et al. Different sympathetic pathways control the metabolism of distinct bone envelopes. Bone 50, 1162–1172 (2012).
Google Scholar
Nowinski, W. L. 3D Atlas of the brain, Head and Neck in 2953 pieces. Neuroinformatics 15, 395–400 (2017).
Google Scholar
Shoja, M. M. et al. Anastomoses between lower cranial and upper cervical nerves: a comprehensive review with potential significance during skull base and neck operations, Part II: glossopharyngeal, vagus, accessory, and hypoglossal nerves and cervical spinal nerves 1-4. Clin. Anat. 27, 131–144 (2014).
Google Scholar
Moss, M. L. An introduction to the neurobiology of oro-facial growth. Acta Biotheor. 21, 236–259 (1972).
Google Scholar
Dierssen, M. Down syndrome: the brain in trisomic mode. Nat. Rev. Neurosci. 13, 844–858 (2012).
Google Scholar
Messiaen, L. et al. Clinical and mutational spectrum of neurofibromatosis type 1-like syndrome. JAMA J. Am. Med. Assoc. 302, 2111–2118 (2009).
Yamanaka, S. et al. Circulatory CNP rescues craniofacial hypoplasia in Achondroplasia. J. Dent. Res. 96, 1526–1534 (2017).
Google Scholar
Lv, X., Gao, F. & Cao, X. Skeletal interoception in bone homeostasis and pain. Cell Metab. 34, 1914–1931 (2022).
Google Scholar
Cooper, R. R. Nerves in cortical bone. Science 160, 327–328 (1968).
Google Scholar
Hohmann, E. L., Elde, R. P., Rysavy, J. A., Einzig, S. & Gebhard, R. L. Innervation of periosteum and bone by sympathetic vasoactive intestinal peptide-containing nerve fibers. Science 232, 868–871 (1986).
Google Scholar
Dimitri, P. & Rosen, C. The central nervous system and bone metabolism: an evolving story. Calcif. Tissue Int. 100, 476–485 (2017).
Google Scholar
Elefteriou, F. Impact of the autonomic nervous system on the skeleton. Physiol. Rev. 98, 1083–1112 (2018).
Google Scholar
Wan, Q. Q. et al. Crosstalk between bone and nerves within bone. Adv. Sci. 8, 24 (2021).
Fristad, I. Dental innervation: functions and plasticity after peripheral injury. Acta Odontol. Scand. 55, 236–254 (1997).
Google Scholar
Kim, S. T. et al. Location of the mandibular canal and the topography of its neurovascular structures. J. Craniofac. Surg. 20, 936–939 (2009).
Google Scholar
Renzi, G., Carboni, A., Perugini, M., Giovannetti, F. & Becelli, R. Posttraumatic trigeminal nerve impairment: a prospective analysis of recovery patterns in a series of 103 consecutive facial fractures. J. Oral. Maxillofac. Surg. 62, 1341–1346 (2004).
Google Scholar
Tischfield, M. A. et al. Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell 140, 74–87 (2010).
Google Scholar
Newall, A. R., Orser, R. & Hunt, M. The control of oral secretions in bulbar ALS/MND. J. Neurol. Sci. 139, 43–44 (1996).
Google Scholar
Tonomura, S. et al. Intracerebral hemorrhage and deep microbleeds associated with cnm-positive Streptococcus mutans; a hospital cohort study. Sci. Rep. 6, 9 (2016).
Liu, X. H. et al. Perineural invasion in adenoid cystic carcinoma of the salivary glands: Where we are and where we need to go. Front. Oncol. 10, 10 (2020).
Saletu, A. et al. Controlled clinical and psychometric studies on the relation between periodontitis and depressive mood. J. Clin. Periodontol. 32, 1219–1225 (2005).
Google Scholar
Harada, Y. et al. Cathepsin E in neutrophils contributes to the generation of neuropathic pain in experimental autoimmune encephalomyelitis. Pain 160, 2050–2062 (2019).
Google Scholar
Labosky, P. A. & Kaestner, K. H. The winged helix transcription factor Hfh2 is expressed in neural crest and spinal cord during mouse development. Mech. Dev. 76, 185–190 (1998).
Google Scholar
Southard-Smith, E. M., Kos, L. & Pavan, W. J. Sox10 mutation disrupts neural crest development in DOM Hirschsprung mouse model. Nat. Genet 18, 60–64 (1998).
Google Scholar
Martik, M. L. & Bronner, M. E. Riding the crest to get a head: neural crest evolution in vertebrates. Nat. Rev. Neurosci. 22, 616–626 (2021).
Google Scholar
Chai, Y. et al. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127, 1671–1679 (2000).
Google Scholar
Kulesa, P. M., Bailey, C. M., Kasemeier-Kulesa, J. C. & McLennan, R. Cranial neural crest migration: new rules for an old road. Dev. Biol. 344, 543–554 (2010).
Google Scholar
Gong, S. G. Cranial neural crest: migratory cell behavior and regulatory networks. Exp. Cell Res. 325, 90–95 (2014).
Google Scholar
AlSarheed, M. A comparative study of oral health amongst trisomy 21 children living in Riyadh, Saudi Arabia: Part 1 caries, malocclusion, trauma. Saudi. Dent. J. 27, 220–223 (2015).
Google Scholar
Hanookai, D., Nowzari, H., Contreras, A., Morrison, J. L. & Slots, J. Herpesviruses and periodontopathic bacteria in trisomy 21 periodontitis. J. Periodont. 71, 376–384 (2000).
Google Scholar
Díaz-Quevedo, A. A., Castillo-Quispe, H. M. L., Atoche-Socola, K. J. & Arriola-Guillén, L. E. Evaluation of the craniofacial and oral characteristics of individuals with Down syndrome: a review of the literature. J. Stomatol Oral. Maxillofac. Surg. 122, 583–587 (2021).
Google Scholar
Suri, S., Tompson, B. D. & Atenafu, E. Prevalence and patterns of permanent tooth agenesis in Down syndrome and their association with craniofacial morphology. Angle Orthod. 81, 260–269 (2011).
Google Scholar
Cuoghi, O. A. et al. Prevalence of dental anomalies in permanent dentition of brazilian individuals with down syndrome. Open Dent. J. 10, 469–473 (2016).
Google Scholar
Nuernberg, M. A. A. et al. Periodontal status of individuals with Down syndrome: sociodemographic, behavioural and family perception influence. J. Intellect. Disabil. Res. 63, 1181–1192 (2019).
Google Scholar
Lugović-Mihić, L., Pilipović, K., Crnarić, I., Šitum, M. & Duvančić, T. Differential diagnosis of cheilitis – how to classify cheilitis? Acta Clin. Croat. 57, 342–351 (2018).
Google Scholar
Lott, I. T. & Head, E. Dementia in Down syndrome: unique insights for Alzheimer disease research. Nat. Rev. Neurol. 15, 135–147 (2019).
Google Scholar
Ulualp, S. Outcomes of tongue base reduction and lingual tonsillectomy for residual pediatric obstructive sleep apnea after adenotonsillectomy. Int Arch. Otorhinolaryngol. 23, e415–e421 (2019).
Google Scholar
Lammert, M., Friedman, J. M., Kluwe, L. & Mautner, V. F. Prevalence of neurofibromatosis 1 in German children at elementary school enrollment. Arch. Dermatol. 141, 71–74 (2005).
Google Scholar
Rasmussen, S. A. & Friedman, J. M. NF1 gene and neurofibromatosis 1. Am. J. Epidemiol. 151, 33–40 (2000).
Google Scholar
Singhal, D. et al. Craniofacial neurofibromatosis: treatment of the midface deformity. J. Cranio MaxilloFac. Surg. 42, 595–600 (2014).
Cunha, K. S. G., Barboza, E. P., Dias, E. P. & Oliveira, F. M. Neurofibromatosis type I with periodontal manifestation. A case report and literature review. Br. Dent. J. 196, 457–460 (2004).
Google Scholar
Ruggieri, M. et al. Unusual form of recurrent giant cell granuloma of the mandible and lower extremities in a patient with neurofibromatosis type 1. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 87, 67–72 (1999).
Google Scholar
Friedrich, R. E., Giese, M., Schmelzle, R., Mautner, V. F. & Scheuer, H. A. Jaw malformations plus displacement and numerical aberrations of teeth in neurofibromatosis type 1: a descriptive analysis of 48 patients based on panoramic radiographs and oral findings. J. Cranio MaxilloFac. Surg. 31, 1–9 (2003).
Asgary, S. & Aminzadeh, N. Unilateral gingival enlargement in patient with neurofibromatosis type I. N. Y. State Dent. J. 78, 50–53 (2012).
Google Scholar
Bongiorno, M. R., Pistone, G. & Arico, M. Manifestations of the tongue in neurofibromatosis type 1. Oral. Dis. 12, 125–129 (2006).
Google Scholar
Curtin, J. P. & McCarthy, S. W. Perineural fibrous thickening within the dental pulp in type 1 neurofibromatosis – a case report. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 84, 400–403 (1997).
Google Scholar
Takano, T. et al. The effect of parathyroid hormone (1-34) on cyclic AMP level, ornithine decarboxylase activity, and glycosaminoglycan synthesis of chondrocytes from mandibular condylar cartilage, nasal septal cartilage, and spheno-occipital synchondrosis in culture. J. Dent. Res. 66, 84–87 (1987).
Google Scholar
Cohen, M. M. Jr Short-limb skeletal dysplasias and craniosynostosis: what do they have in common? Pediatr. Radiol. 27, 442–446 (1997).
Google Scholar
Shiang, R. et al. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 78, 335–342 (1994).
Google Scholar
Matsushita, T. et al. FGFR3 promotes synchondrosis closure and fusion of ossification centers through the MAPK pathway. Hum. Mol. Genet. 18, 227–240 (2009).
Google Scholar
Buchner, K. et al. Trigeminal stimulus menthol masks bitter off-flavor of artificial sweetener acesulfame-K. Foods 11, 12 (2022).
Blanton, P. L. & Jeske, A. H. The key to profound local anesthesia – neuroanatomy. J. Am. Dent. Assoc. 134, 753–760 (2003).
Google Scholar
Ladizesky, M. G., Cutrera, R. A., Boggio, V., Mautalen, C. & Cardinali, D. P. Effect of unilateral superior cervical ganglionectomy on bone mineral content and density of rat’s mandible. J. Auton. Nerv. Syst. 78, 113–116 (2000).
Google Scholar
Wu, Q. Q., Yang, B., Cao, C., Guang, M. K. & Gong, P. Age-dependent impact of inferior alveolar nerve transection on mandibular bone metabolism and the underlying mechanisms. J. Mol. Histol. 47, 579–586 (2016).
Google Scholar
Yu, X. J. et al. Expression of neuropeptides and bone remodeling-related factors during periodontal tissue regeneration in denervated rats. J. Mol. Histol. 46, 195–203 (2015).
Google Scholar
Wang, L. et al. Locally applied nerve growth factor enhances bone consolidation in a rabbit model of mandibular distraction osteogenesis. J. Orthop. Res. 24, 2238–2245 (2006).
Google Scholar
Cherruau, M., Morvan, F. O., Schirar, A. & Saffar, J. L. Chemical sympathectomy-induced changes in TH-, VIP-, and CGRP-immunoreactive fibers in the rat mandible periosteum: Influence on bone resorption. J. Cell. Physiol. 194, 341–348 (2003).
Google Scholar
Takeda, S. et al. Leptin regulates bone formation via the sympathetic nervous system. Cell 111, 305–317 (2002).
Google Scholar
Li, Y. et al. Biodegradable magnesium combined with distraction osteogenesis synergistically stimulates bone tissue regeneration via CGRP-FAK-VEGF signaling axis. Biomaterials 275, 14 (2021).
Azuma, H., Kido, J., Ikedo, D., Kataoka, M. & Nagata, T. Substance P enhances the inhibition of osteoblastic cell differentiation induced by lipopolysaccharide from Porphyromonas gingivalis. J. Periodont. 75, 974–981 (2004).
Google Scholar
Elefteriou, F., Campbell, P. & Ma, Y. Control of bone remodeling by the peripheral sympathetic nervous system. Calcif. Tissue Int. 94, 140–151 (2014).
Google Scholar
Eimar, H., Tamimi, I., Murshed, M. & Tamimi, F. Cholinergic regulation of bone. J. Musculoskelet. Neuronal Interact. 13, 124–132 (2013).
Google Scholar
Bajayo, A. et al. Skeletal parasympathetic innervation communicates central IL-1 signals regulating bone mass accrual. Proc. Natl Acad. Sci. USA 109, 15455–15460 (2012).
Google Scholar
Khosla, S. Minireview: the OPG/RANKL/RANK system. Endocrinology 142, 5050–5055 (2001).
Google Scholar
Kessler, J. A., Bell, W. O. & Black, I. B. Interactions between the sympathetic and sensory innervation of the iris. J. Neurosci. 3, 1301–1307 (1983).
Google Scholar
Mauprivez, C. et al. Periosteum metabolism and nerve fiber positioning depend on interactions between osteoblasts and peripheral innervation in rat mandible. PloS one 10, e0140848 (2015).
Google Scholar
Jiao, K. et al. β2-Adrenergic signal transduction plays a detrimental role in subchondral bone loss of temporomandibular joint in osteoarthritis. Sci. Rep. 5, (2015).
Ribeiro, A. B. et al. Carotid sinus nerve stimulation attenuates alveolar bone loss and inflammation in experimental periodontitis. Sci. Rep. 10, 11 (2020).
Arredondo, J. et al. Muscarinic acetylcholine receptors regulating cell cycle progression are expressed in human gingival keratinocytes. J. Periodontal. Res. 38, 79–89 (2003).
Google Scholar
Nguyen, V. T. et al. Choline acetyltransferase, acetylcholinesterase, and nicotinic acetylcholine receptors of human gingival and esophageal epithelia. J. Dent. Res. 79, 939–949 (2000).
Google Scholar
Zoheir, N., Lappin, D. F. & Nile, C. J. Acetylcholine and the alpha 7 nicotinic receptor: a potential therapeutic target for the treatment of periodontal disease? Inflamm. Res. 61, 915–926 (2012).
Google Scholar
Ordovas-Montanes, J. et al. The regulation of immunological processes by peripheral neurons in homeostasis and disease. Trends Immunol. 36, 578–604 (2015).
Google Scholar
Procaccini, C., Pucino, V., De Rosa, V., Marone, G. & Matarese, G. Neuro-endocrine networks controlling immune system in health and disease. Front Immunol. 5, 143 (2014).
Google Scholar
Li, C. H. & Amar, S. Morphometric, histomorphometric, and microcomputed tomographic analysis of periodontal inflammatory lesions in a murine model. J. Periodontol. 78, 1120–1128 (2007).
Google Scholar
Yang, Y., Zhang, B., Yang, Y. F., Peng, B. B. & Ye, R. PLGA containing human adipose-derived stem cell-derived extracellular vesicles accelerates the repair of alveolar bone defects via transfer of CGRP. Oxid. Med. Cell. Longev. 2022, 14 (2022).
Wang, L. P. et al. Substance P stimulates bone marrow stromal cell osteogenic activity, osteoclast differentiation, and resorption activity in vitro. Bone 45, 309–320 (2009).
Google Scholar
Wang, T. J. et al. Substance P incorporation in calcium phosphate cement for dental alveolar bone defect restoration. Mater. Sci. Eng. C. Mater. Biol. Appl. 69, 546–553 (2016).
Google Scholar
Zhang, Y. B. et al. Local injection of substance P increases bony formation during mandibular distraction osteogenesis in rats. Br. J. Oral. Maxillofac. Surg. 52, 697–702 (2014).
Google Scholar
Levi-Montalcini, R. The nerve growth factor 35 years later. Science 237, 1154–1162 (1987).
Google Scholar
Wang, L. et al. Nerve growth factor and tyrosine kinase A in human salivary adenoid cystic carcinoma: expression patterns and effects on in vitro invasive behavior. J. Oral. Maxillofac. Surg. 64, 636–641 (2006).
Google Scholar
Eppley, B. L., Snyders, R. V., Winkelmann, T. M. & Roufa, D. G. Efficacy of nerve growth factor in regeneration of the mandibular nerve: a preliminary report. J. Oral. Maxillofac. Surg. 49, 61–68 (1991).
Google Scholar
Sicard, L. et al. Dental phenotype in Crouzon syndrome: a controlled radiographic study in 22 patients. Arch. Oral. Biol. 131, 105253 (2021).
Google Scholar
Kyrkanides, S., Huang, H. & Faber, R. D. Neurologic regulation and orthodontic tooth movement. Front. Oral. Biol. 18, 64–74 (2016).
Google Scholar
Beertsen, W., McCulloch, C. A. & Sodek, J. The periodontal ligament: a unique, multifunctional connective tissue. Periodontol 2000 13, 20–40 (1997).
Google Scholar
Wang, K. et al. Axin2+ PDL cells directly contribute to new alveolar bone formation in response to orthodontic tension force. J. Dent. Res. 101, 695–703 (2022).
Google Scholar
Watson, P. A. Function follows form: generation of intracellular signals by cell deformation. FASEB J. 5, 2013–2019 (1991).
Google Scholar
Jiang, Y. et al. Mechanosensitive Piezo1 in periodontal ligament cells promotes alveolar bone remodeling during orthodontic tooth movement. Front. Physiol. 12, 767136 (2021).
Google Scholar
Christensen, O. Mediation of cell volume regulation by Ca2+ influx through stretch-activated channels. Nature 330, 66–68 (1987).
Google Scholar
Ei Hsu Hlaing, E., Ishihara, Y., Wang, Z., Odagaki, N. & Kamioka, H. Role of intracellular Ca(2+)-based mechanotransduction of human periodontal ligament fibroblasts. FASEB J. 33, 10409–10424 (2019).
Google Scholar
Singh, I. J., Herskovits, M. S., Chiego, D. J. Jr. & Klein, R. M. Modulation of osteoblastic activity by sensory and autonomic innervation of bone. Prog. Clin. Biol. Res. 101, 535–551 (1982).
Google Scholar
Heyeraas, K. J., Kvinnsland, I., Byers, M. R. & Jacobsen, E. B. Nerve fibers immunoreactive to protein gene product 9.5, calcitonin gene-related peptide, substance P, and neuropeptide Y in the dental pulp, periodontal ligament, and gingiva in cats. Acta Odontol. Scand. 51, 207–221 (1993).
Google Scholar
Nishikawa, S. Systemic labeling and visualization of dental sensory nerves by the novel fluorescent marker AM1-43. Anat. Sci. Int. 81, 181–186 (2006).
Google Scholar
Harris, J. A. Using c-fos as a neural marker of pain. Brain Res. Bull. 45, 1–8 (1998).
Google Scholar
Fujiyoshi, Y., Yamashiro, T., Deguchi, T., Sugimoto, T. & Takano-Yamamoto, T. The difference in temporal distribution of c-Fos immunoreactive neurons between the medullary dorsal horn and the trigeminal subnucleus oralis in the rat following experimental tooth movement. Neurosci. Lett. 283, 205–208 (2000).
Google Scholar
Novaes, A. P., da Rocha, M. J. & Leite-Panissi, C. R. Tooth movement activates the central amygdala and the lateral hypothalamus by the magnitude of the force applied. Angle Orthod. 80, 111–115 (2010).
Google Scholar
Richardson, J. D. & Vasko, M. R. Cellular mechanisms of neurogenic inflammation. J. Pharm. Exp. Ther. 302, 839–845 (2002).
Maggi, C. A. Tachykinins and calcitonin gene-related peptide (CGRP) as co-transmitters released from peripheral endings of sensory nerves. Prog. Neurobiol. 45, 1–98 (1995).
Google Scholar
O’Hara, A. H., Sampson, W. J., Dreyer, C. W., Pierce, A. M. & Ferguson, I. A. Immunohistochemical detection of nerve growth factor and its receptors in the rat periodontal ligament during tooth movement. Arch. Oral. Biol. 54, 871–878 (2009).
Google Scholar
Vandevska-Radunovic, V., Kvinnsland, S. & Kvinnsland, I. H. Effect of experimental tooth movement on nerve fibres immunoreactive to calcitonin gene-related peptide, protein gene product 9.5, and blood vessel density and distribution in rats. Eur. J. Orthod. 19, 517–529 (1997).
Google Scholar
Giannopoulou, C., Dudic, A. & Kiliaridis, S. Pain discomfort and crevicular fluid changes induced by orthodontic elastic separators in children. J. Pain. 7, 367–376 (2006).
Google Scholar
Kondo, H. et al. Orthodontic tooth movement-activated sensory neurons contribute to enhancing osteoclast activity and tooth movement through sympathetic nervous signalling. Eur. J. Orthod. 44, 404–411 (2022).
Google Scholar
Takiguchi, M. et al. Characteristics of mandibular canal branches related to nociceptive marker. J. Dent. Res. 100, 623–630 (2021).
Google Scholar
Pramstraller, M., Schincaglia, G. P., Vecchiatini, R., Farina, R. & Trombelli, L. Alveolar ridge dimensions in mandibular posterior regions: a retrospective comparative study of dentate and edentulous sites using computerized tomography data. Surg. Radiol. Anat. 40, 1419–1428 (2018).
Google Scholar
Wadu, S. G., Penhall, B. & Townsend, G. C. Morphological variability of the human inferior alveolar nerve. Clin. Anat. 10, 82–87 (1997).
Google Scholar
Gangatharan, G., Schneider-Maunoury, S. & Breau, M. A. Role of mechanical cues in shaping neuronal morphology and connectivity. Biol. Cell. 110, 125–136 (2018).
Google Scholar
Isomura, E. T. et al. Inferior alveolar nerve regeneration after bifocal distraction osteogenesis in dogs. J. Oral. Maxillofac. Surg. 71, 1810.e1–1811 (2013).
Google Scholar
Day, I. N. & Thompson, R. J. Molecular cloning of cDNA coding for human PGP 9.5 protein. A novel cytoplasmic marker for neurones and neuroendocrine cells. FEBS Lett. 210, 157–160 (1987).
Google Scholar
McCulloch, C. A., Lekic, P. & McKee, M. D. Role of physical forces in regulating the form and function of the periodontal ligament. Periodontology 24, 56–72 (2000).
Ren, Y., Maltha, J. C., Van ‘t Hof, M. A. & Kuijpers-Jagtman, A. M. Optimum force magnitude for orthodontic tooth movement: a mathematic model. Am. J. Orthod. Dentofac. Orthop. 125, 71–77 (2004).
Vandevska-Radunovic, V. Neural modulation of inflammatory reactions in dental tissues incident to orthodontic tooth movement. A review of the literature. Eur. J. Orthod. 21, 231–247 (1999).
Google Scholar
Caviedes-Bucheli, J. et al. The effect of orthodontic forces on calcitonin gene-related peptide expression in human dental pulp. J. Endod. 37, 934–937 (2011).
Google Scholar
Jadun, S., Miller, D. & Renton, T. Orthodontic-related nerve injuries: a review and case series. Br. Dent. J. 229, 244–248 (2020).
Google Scholar
Aloe, L., Rocco, M. L., Bianchi, P. & Manni, L. Nerve growth factor: from the early discoveries to the potential clinical use. J. Transl. Med. 10, (2012).
Taniguchi, M. et al. Disruption of semaphorin III/D gene causes severe abnormality in peripheral nerve projection. Neuron 19, 519–530 (1997).
Google Scholar
Gavazzi, I. Semaphorin-neuropilin-1 interactions in plasticity and regeneration of adult neurons. Cell Tissue Res 305, 275–284 (2001).
Google Scholar
Li, J. et al. Modulation of the crosstalk between schwann cells and macrophages for nerve regeneration: a therapeutic strategy based on a multifunctional tetrahedral framework nucleic acids system. Adv. Mater. 34, (2022).
Clouston, P. D., Sharpe, D. M., Corbett, A. J., Kos, S. & Kennedy, P. J. Perineural spread of cutaneous head and neck cancer. Its orbital and central neurologic complications. Arch. Neurol. 47, 73–77 (1990).
Google Scholar
Lin, J. W., Chen, Y. C., Wen, H. M., Yang, Z. Y. & Zeng, J. S. Weakness of eye closure with central facial paralysis after unilateral hemispheric stroke predicts a worse outcome. J. Stroke Cerebrovasc. Dis. 26, 834–841 (2017).
Google Scholar
Hoffmann, D. F., May, M. & Kubal, W. Slowly progressive facial paralysis due to vascular malformation of the brain stem. Am. J. Otol. 11, 357–359 (1990).
Google Scholar
McCormick, D. P. Herpes-simplex virus as a cause of Bell’s palsy.1972. Rev. Med. Virol. 10, 285–289 (2000).
Google Scholar
Peitersen, E. Bell’s palsy: the spontaneous course of 2,500 peripheral facial nerve palsies of different etiologies. Acta Oto-Laryngol. 122, 4–30 (2002).
Finsterer, J. Management of peripheral facial nerve palsy. Eur. Arch. Oto Rhino Laryn. 265, 743–752 (2008).
Hohman, M. H. & Hadlock, T. A. Etiology, diagnosis, and management of facial palsy: 2000 Patients at a facial nerve center. Laryngoscope 124, E283–E293 (2014).
Google Scholar
Eviston, T. J., Croxson, G. R., Kennedy, P. G. E., Hadlock, T. & Krishnan, A. V. Bell’s palsy: aetiology, clinical features and multidisciplinary care. J. Neurol. Neurosurg. Psychiatry 86, 1356–1361 (2015).
Google Scholar
Valls-Solé, J. Facial palsy, postparalytic facial syndrome, and hemifacial spasm. Mov. Disord. 17, S49–S52 (2002).
Google Scholar
Yaltho, T. C. & Jankovic, J. The many faces of hemifacial spasm: differential diagnosis of unilateral facial spasms. Mov. Disord. 26, 1582–1592 (2011).
Google Scholar
Arseni, C. & Petrovici, I. Persistent tonic facial spasm in brain stem tumours. J. Neurol. Sci. 7, 107–114 (1968).
Google Scholar
Nielsen, V. K. Electrophysiology of the facial nerve in hemifacial spasm: ectopic/ephaptic excitation. Muscle Nerve 8, 545–555 (1985).
Google Scholar
Luo, F. F., Xu, H., Zhang, M. & Wang, Y. Abnormal regional spontaneous brain activity and its indirect effect on spasm ratings in patients with hemifacial spasm. Front. Neurosci. 14, (2020).
Gutmann, L. AAEM minimonograph #37: facial and limb myokymia. Muscle Nerve 14, 1043–1049 (1991).
Google Scholar
Wang, A. & Jankovic, J. Hemifacial spasm: clinical findings and treatment. Muscle Nerve 21, 1740–1747 (1998).
Google Scholar
Hausser-Hauw, C., Roullet, E., Robert, R. & Marteau, R. Oculo-facio-skeletal myorhythmia as a cerebral complication of systemic Whipple’s disease. Mov. Disord. 3, 179–184 (1988).
Google Scholar
Srivanitchapoom, P., Pandey, S. & Hallett, M. Drooling in Parkinson’s disease: a review. Parkinsonism Relat. Disord. 20, 1109–1118 (2014).
Google Scholar
Kamilov, K. P., Kamalova, M. K. & Shokirova, F. A. Biology of mouth cavity in patients with chronic recurrent herpetic stomatitis. Uzbekiston Tibbiet Zh . 5, 5–11 (2018).
Donatsky, O. Cell-mediated and humoral immunity against oral streptococci, neisseria, staphylococci, and adult human oral mucosa antigens in recurrent aphthous stomatitis. Scand. J. Dent. Res. 86, 25–34 (1978).
Google Scholar
Greenberg, M. S. Herpesvirus infections. Dent. Clin. North Am. 40, 359–368 (1996).
Google Scholar
Hodges, G. J. & Johnson, J. M. Adrenergic control of the human cutaneous circulation. Appl. Physiol. Nutr. Metab. 34, 829–839 (2009).
Google Scholar
Gardner, W. J. & McCubbin, J. W. Auriculotemporal syndrome; gustatory sweating due to misdirection of regenerated nerve fibers. J. Am. Med. Assoc. 160, 272–277 (1956).
Google Scholar
Galli, S. Anatomic and functional bases of Frey’s syndrome: sensitive and sensorial stimulations. Rev. Laryngol. Oto. l Rhinol. 105, 89–91 (1984).
Motz, K. M. & Kim, Y. J. Auriculotemporal syndrome (Frey Syndrome). Otolaryngol. Clin. North Am. 49, 501–509 (2016).
Google Scholar
Freedberg, A. S., Shaw, R. S. & McManus, M. J. The auriculotemporal syndrome. A clinical and pharmacologic study. J. Clin. Invest. 27, 669–676 (1948).
Google Scholar
Palmeiro, A. G., Azurara, L., Pimentel, B. & Amaro, C. Case for diagnosis. A transient unilateral face rash upon eating: Frey syndrome. Bras. Dermatol. 98, 108–109 (2023).
Caliò, B., Wenning, G. K., Fanciulli, A. & Colosimo, C. Forehead and scalp gustatory sweating after temporomandibular joint surgery: an atypical presentation of Frey’s syndrome. Clin. Auton. Res. (2023).
Google Scholar
Dewhirst, F. E. et al. The human oral microbiome. J. Bacteriol. 192, 5002–5017 (2010).
Google Scholar
Ihara, M. & Yamamoto, Y. Emerging evidence for pathogenesis of sporadic cerebral small vessel disease. Stroke 47, 554–560 (2016).
Google Scholar
Moazzam, A. A., Rajagopal, S. M., Sedghizadeh, P. P., Zada, G. & Habibian, M. Intracranial bacterial infections of oral origin. J. Clin. Neurosci. 22, 800–806 (2015).
Google Scholar
Nguyen, I., Urbanczyk, K., Mtui, E. & Li, S. Intracranial CNS infections: a literature review and radiology case studies. Semin. Ultrasound Ct. Mr. 41, 106–120 (2020).
Google Scholar
Lee, T. C. et al. Diseases caused by enterovirus 71 infection. Pediatr. Infect. Dis. J. 28, 904–910 (2009).
Google Scholar
Ewald, C., Kuhn, S. & Kalff, R. Pyogenic infections of the central nervous system secondary to dental affections-a report of six cases. Neurosurg. Rev. 29, 163–166 (2006). discussion 166-167.
Google Scholar
Aarabi, G., Thomalla, G., Heydecke, G. & Seedorf, U. Chronic oral infection: an emerging risk factor of cerebral small vessel disease. Oral. Dis. 25, 710–719 (2019).
Google Scholar
Hashioka, S. et al. The possible causal link of periodontitis to neuropsychiatric disorders: More than psychosocial mechanisms. Int. J. Mol. Sci. 20, (2019).
Liebig, C., Ayala, G., Wilks, J. A., Berger, D. H. & Albo, D. Perineural invasion in cancer: a review of the literature. Cancer 115, 3379–3391 (2009).
Google Scholar
Bjørndal, K. et al. Salivary gland carcinoma in Denmark 1990-2005: a national study of incidence, site and histology. Results of the Danish Head and Neck Cancer Group (DAHANCA). Oral. Oncol. 47, 677–682 (2011).
Google Scholar
Sullivan, L. M. & Smee, R. Leptomeningeal carcinomatosis from perineural invasion of a lip squamous cell carcinoma. Australas. Radiol. 50, 262–266 (2006).
Google Scholar
Sethi, S., Lu, M., Kapke, A., Benninger, M. S. & Worsham, M. J. Patient and tumor factors at diagnosis in a multi-ethnic primary head and neck squamous cell carcinoma cohort. J. Surg. Oncol. 99, 104–108 (2009).
Google Scholar
Fahmy, M. D. et al. Are throat pain and otalgia predictive of perineural invasion in squamous cell carcinoma of the oropharynx? J. Oral. Maxillofac. Surg. 80, 363–371 (2022).
Google Scholar
Rahima, B., Shingaki, S., Nagata, M. & Saito, C. Prognostic significance of perineural invasion in oral and oropharyngeal carcinoma. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 97, 423–431 (2004).
Google Scholar
Komazaki, Y. et al. Association between malocclusion and headache among 12- to 15-year-old adolescents: a population-based study. Community Dent. Oral. Epidemiol. 42, 572–580 (2014).
Google Scholar
De Luca Canto, G., Singh, V., Bigal, M. E., Major, P. W. & Flores-Mir, C. Association between tension-type headache and migraine with sleep bruxism: a systematic review. Headache 54, 1460–1469 (2014).
Google Scholar
Lambourne, C., Lampasso, J., Buchanan, W. C. Jr., Dunford, R. & McCall, W. Malocclusion as a risk factor in the etiology of headaches in children and adolescents. Am. J. Orthod. Dentofac. Orthop. 132, 754–761 (2007).
Hinotsume, S. The difference from the point of view of masticatory function between normal occlusion and crowding, using Hellman’s dental stage. Shoni Shikagaku Zasshi 26, 535–555 (1988).
Google Scholar
Hinotsume, S. et al. Occlusal development in children from the functional viewpoint. 4. Amount of masticatory muscle action in children with tooth crowding. Shoni Shikagaku Zasshi 24, 415–427 (1986).
Google Scholar
Burnett, C. A., Fartash, L., Murray, B. & Lamey, P. J. Masseter and temporalis muscle EMG levels and bite force in migraineurs. Headache 40, 813–817 (2000).
Google Scholar
Gonçalves, D. A. et al. Temporomandibular disorders are differentially associated with headache diagnoses: a controlled study. Clin. J. Pain. 27, 611–615 (2011).
Google Scholar
Khoury, S., Carra, M. C., Huynh, N., Montplaisir, J. & Lavigne, G. J. Sleep bruxism-tooth grinding prevalence, characteristics and familial aggregation: a large cross-sectional survey and polysomnographic validation. Sleep 39, 2049–2056 (2016).
Google Scholar
Molina, O. F., Peixoto, M. G., Eid, N. L. M., Aquilino, R. N. & Rank, R. C. I. C. Headache and bruxing behavior types in craniomandibular disorders (CMDs) patients. Rev. Neurocien. 19, 449–457 (2011).
Fernández-de-las-Peñas, C., Cuadrado, M. L., Arendt-Nielsen, L., Simons, D. G. & Pareja, J. A. Myofascial trigger points and sensitization: an updated pain model for tension-type headache. Cephalalgia 27, 383–393 (2007).
Google Scholar
Margaretten, M. Neurologic manifestations of primary Sjögren syndrome. Rheum. Dis. Clin. North Am. 43, 519–529 (2017).
Google Scholar
Sjögren, H. On knowledge of the keratoconjunctivitis sicca. VII. The sicca syndrome-an autoimmune disease. Acta Ophthalmol. 46, 201–206 (1968).
Hamburger, J. Orofacial manifestations in patients with inflammatory rheumatic diseases. Best. Pract. Res. Clin. Rheumatol. 30, 826–850 (2016).
Google Scholar
Zanin, M. C., Garcia, D. M., Rocha, E. M. & de Felício, C. M. Orofacial motor functions and temporomandibular disorders in patients with Sjögren’s Syndrome. Arthritis Care Res. 72, 1057–1065 (2020).
Schiffman, E. et al. Diagnostic criteria for temporomandibular disorders (DC/TMD) for clinical and research applications: recommendations of the international RDC/TMD consortiumnetwork* and Orofacial Pain Special Interest Group†. J. Oral. Facial Pain. Headache 28, 6–27 (2014).
Google Scholar
Rossi, R. & Valeria Saddi, M. Subacute aseptic meningitis as neurological manifestation of primary Sjögren’s syndrome. Clin. Neurol. Neurosurg. 108, 688–691 (2006).
Google Scholar
Chen, Y. W. et al. Sjogren’s syndrome with acute cerebellar ataxia and massive lymphadenopathy: a case report. Acta Neurol. Taiwan. 22, 81–86 (2013).
Google Scholar
Wang, Z. Z. et al. Risk of dementia or Parkinson’s disease in the presence of Sjögren’s syndrome: a systematic review and meta-analysis. Front. Integr. Neurosci. 16, (2022).
Westhoff, G., Dörner, T. & Zink, A. Fatigue and depression predict physician visits and work disability in women with primary Sjögren’s syndrome: results from a cohort study. Rheumatology 51, 262–269 (2012).
Google Scholar
2022 Alzheimer’s disease facts and figures. Alzheimers Dement. 18, 700–789 (2022).
Long, J. M. & Holtzman, D. M. Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179, 312–339 (2019).
Google Scholar
Chen, C. K., Wu, Y. T. & Chang, Y. C. Association between chronic periodontitis and the risk of Alzheimer’s disease: a retrospective, population-based, matched-cohort study. Alzheimers Res. Ther. 9, (2017).
Dominy, S. S. et al. Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci. Adv. 5, (2019).
Martande, S. S. et al. Periodontal health condition in patients with Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen. 29, 498–502 (2014).
Google Scholar
Delwel, S. et al. Oral health and orofacial pain in older people with dementia: a systematic review with focus on dental hard tissues. Clin. Oral. Investig. 21, 17–32 (2017).
Google Scholar
Maldonado, A., Laugisch, O., Bürgin, W., Sculean, A. & Eick, S. Clinical periodontal variables in patients with and without dementia-a systematic review and meta-analysis. Clin. Oral. Investig. 22, 2463–2474 (2018).
Google Scholar
Gao, S. S., Chu, C. H. & Young, F. Y. F. Oral health and care for elderly people with Alzheimer’s disease. Int. J. Environ. Res. Public Health. 17, (2020).
Aragón, F. et al. Oral health in Alzheimer’s disease: a multicenter case-control study. Clin. Oral. Investig. 22, 3061–3070 (2018).
Google Scholar
Delwel, S. et al. Oral hygiene and oral health in older people with dementia: a comprehensive review with focus on oral soft tissues. Clin. Oral. Investig. 22, 93–108 (2018).
Google Scholar
Marchini, L., Ettinger, R., Caprio, T. & Jucan, A. Oral health care for patients with Alzheimer’s disease: an update. Spec. Care Dent. 39, 262–273 (2019).
Fonseca-Ornelas, L. et al. Parkinson-causing mutations in LRRK2 impair the physiological tetramerization of endogenous α-synuclein in human neurons. NPJ Parkinsons Dis. 8, (2022).
Chen, C. K., Wu, Y. T. & Chang, Y. C. Periodontal inflammatory disease is associated with the risk of Parkinson’s disease: a population-based retrospective matched-cohort study. PeerJ. 5, (2017).
Van Stiphout, M. A. E., Marinus, J., van Hilten, J. J., Lobbezoo, F. & de Baat, C. Oral health of Parkinson’s disease patients: a case-control study. Parkinsons Dis. 2018, (2018).
Silva, P. F. et al. Impact in oral health and the prevalence of temporomandibular disorder in individuals with Parkinson’s disease. J. Phys. Ther. Sci. 27, 887–891 (2015).
Google Scholar
Lobbezoo, F. & Naeije, M. Dental implications of some common movement disorders: a concise review. Arch. Oral. Biol. 52, 395–398 (2007).
Google Scholar
Suttrup, I. & Warnecke, T. Dysphagia in Parkinson’s disease. Dysphagia 31, 24–32 (2016).
Google Scholar
Ribeiro, G. R., Campos, C. H. & Rodrigues Garcia, R. C. M. Parkinson’s disease impairs masticatory function. Clin. Oral. Investig. 21, 1149–1156 (2017).
Google Scholar
Shamim, T. The psychosomatic disorders pertaining to dental practice with revised working type classification. Korean J. Pain. 27, 16–22 (2014).
Google Scholar
Gupta, O. P., Tiwarri, O. S., Salimeno, T. Jr. & Allen, D. R. Neuropsychiatric disorders and periodontal disease. Ann. Dent. 52, 28–33 (1993).
Google Scholar
Monteiro da Silva, A. M., Oakley, D. A., Newman, H. N., Nohl, F. S. & Lloyd, H. M. Psychosocial factors and adult onset rapidly progressive periodontitis. J. Clin. Periodontol. 23, 789–794 (1996).
Google Scholar
Moss, M. E. et al. Exploratory case-control analysis of psychosocial factors and adult periodontitis. J. Periodontol. 67, 1060–1069 (1996).
Google Scholar
Dumitrescu, A. L. Depression and inflammatory periodontal disease considerations-An interdisciplinary approach. Front. Psychol. 7, (2016).
Dworkin, S. F. & LeResche, L. Research diagnostic criteria for temporomandibular disorders: review, criteria, examinations and specifications, critique. J. Craniomandib. Disord. 6, 301–355 (1992).
Google Scholar
Lora, V. R., Canales Gde, L., Gonçalves, L. M., Meloto, C. B. & Barbosa, C. M. Prevalence of temporomandibular disorders in postmenopausal women and relationship with pain and HRT. Braz. Oral. Res. 30, (2016).
Dworkin, S. F. et al. Reliability, validity, and clinical utility of the research diagnostic criteria for Temporomandibular Disorders Axis II Scales: depression, non-specific physical symptoms, and graded chronic pain. J. Orofac. Pain. 16, 207–220 (2002).
Google Scholar
De La Torre Canales, G. et al. Prevalence of psychosocial impairment in temporomandibular disorder patients: a systematic review. J. Oral. Rehabil. 45, 881–889 (2018).
Google Scholar
Fillingim, R. B. et al. Psychological factors associated with development of TMD: the OPPERA prospective cohort study. J. Pain. 14, T75–T90 (2013).
Google Scholar
Staniszewski, K. et al. Temporomandibular disorders related to stress and HPA-axis regulation. Pain. Res Manag. 2018, 7020751 (2018).
Google Scholar
Jo, K. B. et al. Association of pain intensity, pain-related disability, and depression with hypothalamus-pituitary-adrenal axis function in female patients with chronic temporomandibular disorders. Psychoneuroendocrinology 69, 106–115 (2016).
Google Scholar
Jasim, H., Ghafouri, B., Gerdle, B., Hedenberg-Magnusson, B. & Ernberg, M. Altered levels of salivary and plasma pain related markers in temporomandibular disorders. J. Headache Pain. 21, (2020).
Chen, Y. W. et al. Significantly lower nerve growth factor levels in patients with major depressive disorder than in healthy subjects: a meta-analysis and systematic review. Neuropsychiatr. Dis. Treat. 11, 925–933 (2015).
Google Scholar
Kishi, T., Yoshimura, R., Ikuta, T. & Iwata, N. Brain-derived neurotrophic factor and major depressive disorder: evidence from meta-analyses. Front. Psychiatry 8, 308 (2017).
Google Scholar
Staniszewski, K., Ronold, E. H., Hammar, Å. & Rosén, A. Neurocognitive functioning in patients with painful temporomandibular disorders. J. Pain. Res 16, 2015–2025 (2023).
Google Scholar
Yin, Y. et al. The neuro-pathophysiology of temporomandibular disorders-related pain: a systematic review of structural and functional MRI studies. J. Headache Pain. 21, 78 (2020).
Google Scholar
Won, S. Y. et al. Neuroanastomosis and the innervation territory of the mental nerve. Clin. Anat. 27, 598–602 (2014).
Google Scholar
Cruccu, G. et al. Trigeminal neuralgia: new classification and diagnostic grading for practice and research. Neurology 87, 220–228 (2016).
Google Scholar
Cruccu, G., Di Stefano, G. & Truini, A. Trigeminal neuralgia. N. Engl. J. Med. 383, 754–762 (2020).
Google Scholar
Olesen, J. Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Cephalalgia 38, 1–211 (2018).
Siqueira, J. T. et al. Clinical study of patients with persistent orofacial pain. Arq. Neuropsiquiatr. 62, 988–996 (2004).
Google Scholar
Burchiel, K. J. Abnormal impulse generation in focally demyelinated trigeminal roots. J. Neurosurg. 53, 674–683 (1980).
Google Scholar
Waxman, S. G. & Brill, M. H. Conduction through demyelinated plaques in multiple sclerosis: computer simulations of facilitation by short internodes. J. Neurol. Neurosurg. Psychiatry 41, 408–416 (1978).
Google Scholar
Teixeira, M. J., de Siqueira, S. R. & Bor-Seng-Shu, E. Glossopharyngeal neuralgia: neurosurgical treatment and differential diagnosis. Acta Neurochir. 150, 471–475 (2008).
Google Scholar
Hamada, O. et al. A patient with vertebral artery dissection who initially suffered from pharyngeal pain. No Shinkei Geka 41, 1081–1085 (2013).
Google Scholar
Nurmikko, T. J. Chapter 38 Trigeminal neuralgia and other facial neuralgias. Handb. Clin. Neurol. 81, 573–596 (2006).
Google Scholar
Romero-Reyes, M. & Uyanik, J. M. Orofacial pain management: current perspectives. J. Pain. Res. 7, 99–115 (2014).
Google Scholar
Kapnadak, S. G., Mikolaenko, I., Enfield, K., Gress, D. R. & Nathan, B. R. Ondine’s curse with accompanying trigeminal and glossopharyngeal neuralgia secondary to medullary telangiectasia. Neurocrit. Care 12, 395–399 (2010).
Google Scholar
Honey, C. M. et al. Concurrent glossopharyngeal neuralgia and hemi-laryngopharyngeal spasm (HeLPS): a case report and a review of the literature. Neurosurgery 87, E573–E577 (2020).
Google Scholar
Garretson, H. D. & Elvidge, A. R. Glossopharyngeal neuralgia with asystole and seizures. Arch. Neurol. 8, 26–31 (1963).
Google Scholar
Boghosian-Sell, L. et al. Molecular mapping of the Edwards syndrome phenotype to two noncontiguous regions on chromosome 18. Am. J. Hum. Genet 55, 476–483 (1994).
Google Scholar
Balasundaram, P. & Avulakunta, I. D. Edwards sy ndrome (StatPearls. Publishing, 2023).
Maheshwari, M. et al. PTPN11 mutations in Noonan syndrome type I: detection of recurrent mutations in exons 3 and 13. Hum. Mutat. 20, 298–304 (2002).
Google Scholar
Tartaglia, M. et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat. Genet 29, 465–468 (2001).
Google Scholar
Tartaglia, M. et al. PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. Am. J. Hum. Genet 70, 1555–1563 (2002).
Google Scholar
Roberts, A. E., Allanson, J. E., Tartaglia, M. & Gelb, B. D. Noonan syndrome. Lancet 381, 333–342 (2013).
Google Scholar
Pérez Jurado, L. A., Peoples, R., Kaplan, P., Hamel, B. C. & Francke, U. Molecular definition of the chromosome 7 deletion in Williams syndrome and parent-of-origin effects on growth. Am. J. Hum. Genet 59, 781–792 (1996).
Google Scholar
Kozel, B. A. et al. Williams syndrome. Nat. Rev. Dis. Prim. 7, 42 (2021).
Google Scholar
Butler, M. G. Prader-Willi syndrome: current understanding of cause and diagnosis. Am. J. Med Genet 35, 319–332 (1990).
Google Scholar
Butler, M. G., Miller, J. L. & Forster, J. L. Prader-Willi syndrome – clinical genetics, diagnosis and treatment approaches: an update. Curr. Pediatr. Rev. 15, 207–244 (2019).
Google Scholar
Bhattacharjee, K. et al. Crouzon syndrome and the eye: an overview. Indian J. Ophthalmol. 70, 2346–2354 (2022).
Google Scholar
Kobayashi, Y., Ogura, K., Hikita, R., Tsuji, M. & Moriyama, K. Craniofacial, oral, and cervical morphological characteristics in Japanese patients with Apert syndrome or Crouzon syndrome. Eur. J. Orthod. 43, 36–44 (2021).
Google Scholar
Tan, A. P. & Mankad, K. Apert syndrome: magnetic resonance imaging (MRI) of associated intracranial anomalies. Childs Nerv. Syst. 34, 205–216 (2018).
Google Scholar
Yu, K., Herr, A. B., Waksman, G. & Ornitz, D. M. Loss of fibroblast growth factor receptor 2 ligand-binding specificity in Apert syndrome. Proc. Natl Acad. Sci. USA 97, 14536–14541 (2000).
Google Scholar
White, S. M. et al. Growth, behavior, and clinical findings in 27 patients with Kabuki (Niikawa-Kuroki) Syndrome. Am. J. Med. Genet. A. 127A, 118–127 (2004).
Google Scholar
Porntaveetus, T. et al. Expanding the oro-dental and mutational spectra of Kabuki Syndrome and expression of KMT2D and KDM6A in human tooth germs. Int. J. Biol. Sci. 14, 381–389 (2018).
Google Scholar
Dentici, M. et al. Clinical spectrum of Kabuki-like syndrome caused by HNRNPK haploinsufficiency. Case report and literature review. Eur. J. Hum. Genet. 26, 477–477 (2018).
Miller, G. Neurological disorders – the mystery of the missing smile. Science 316, 826–827 (2007).
Google Scholar
Verzijl, H., van der Zwaag, B., Cruysberg, J. R. M. & Padberg, G. W. Mobius syndrome redefined – a syndrome of rhombencephalic maldevelopment. Neurology 61, 327–333 (2003).
Google Scholar
Lee, S. & Moon, C.-H. Orthodontic treatment in a patient with Moebius syndrome: a case report. Korean J. Orthod. 52, 451–460 (2022).
Google Scholar
Picciolini, O. et al. Moebius syndrome: clinical features, diagnosis, management and early intervention. Ital. J. Pediatr. 42, 7 (2016).
Bucher, F., Fricke, J., Neugebauer, A., Cursiefen, C. & Heindl, L. M. Ophthalmological manifestations of Parry-Romberg syndrome. Surv. Ophthalmol. 61, 693–701 (2016).
Google Scholar
Vaienti, L., Soresina, M. & Menozzi, A. Parascapular free flap and fat grafts: combined surgical methods in morphological restoration of hemifacial progressive atrophy. Plast. Reconstr. Surg. 116, 699–711 (2005).
Google Scholar
Schultz, K. P., Dong, E., Truong, T. A. & Maricevich, R. S. Parry Romberg syndrome. Clin. Plast. Surg. 46, 231–237 (2019).
Google Scholar
Tristani-Firouzi, M. et al. Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J. Clin. Invest. 110, 381–388 (2002).
Google Scholar
Andelfinger, G. et al. KCNJ2 mutation results in Andersen syndrome with sex-specific cardiac and skeletal muscle phenotypes. Am. J. Hum. Genet. 71, 663–668 (2002).
Google Scholar
Sansone, V. & Tawil, R. Management and treatment of andersen-tawil syndrome (ATS). Neurotherapeutics 4, 233–237 (2007).
Google Scholar
Elefteriou, F. et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434, 514–520 (2005).
Google Scholar
Inoue, H., Kondo, A. & Togari, A. Activation of the peripheral sympathetic nervous system increased the expression of cyclooxygenase-2 (COX-2) mRNA in mouse calvaria. Neurosci. Lett. 338, 37–40 (2003).
Google Scholar
Rahman, S., Dobson, P. R. M., Bunning, R. A. D., Russell, R. G. G. & Brown, B. L. The regulation of connective tissue metabolism by vasoactive intestinal polypeptide. Regul. Pept. 37, 111–121 (1992).
Google Scholar
Persson, E. & Lerner, U. H. The neuropeptide VIP potentiates IL-6 production induced by proinflammatory osteotropic cytokines in calvarial osteoblasts and the osteoblastic cell line MC3T3-E1. Biochem. Biophys. Res. Commun. 335, 705–711 (2005).
Google Scholar
Mrak, E. et al. Calcitonin gene-related peptide (CGRP) inhibits apoptosis in human osteoblasts by β-catenin stabilization. J. Cell Physiol. 225, 701–708 (2010).
Google Scholar
link