Site icon Zenith Cure

Meningeal lymphatic drainage: novel insights into central nervous system disease

Meningeal lymphatic drainage: novel insights into central nervous system disease
  • Oliver, G. Lymphatic vasculature development. Nat. Rev. Immunol. 4, 35–45 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Oliver, G. & Alitalo, K. The lymphatic vasculature: recent progress and paradigms. Annu Rev. Cell Dev. Biol. 21, 457–483 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Petrova, T. V. & Koh, G. Y. Organ-specific lymphatic vasculature: From development to pathophysiology. J. Exp. Med. 215, 35–49 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • G, A. De lactibus, sive lacteis venis, quarto vasorum mesaraicorum genere, novo invento Gasparis Asellii Cremo. Dissertatio. (MDCXXIIX), Milan, (1628).

  • Wilting, J. & Becker, J. The lymphatic vascular system: much more than just a sewer. Cell Biosci. 12, 157 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mascagni, P., & Ciro, S. Vasorum lymphaticorum Corporis Humani Historia et Ichnographia (Ex typographia Pazzini Carli, 1787).

  • Sandrone, S., Moreno-Zambrano, D., Kipnis, J. & van Gijn, J. A (delayed) history of the brain lymphatic system. Nat. Med. 25, 538–540 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lecco, V. [Probable modification of the lymphatic fissures of the walls of the venous sinuses of the dura mater]. Arch. Ital. Otol. Rinol. Laringol. 64, 287–296 (1953).

    CAS 
    PubMed 

    Google Scholar 

  • Foldi, M. et al. New contributions to the anatomical connections of the brain and the lymphatic system. Acta Anat. 64, 498–505 (1966).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Andres, K. H., von During, M., Muszynski, K. & Schmidt, R. F. Nerve fibres and their terminals of the dura mater encephali of the rat. Anat. Embryol. 175, 289–301 (1987).

    Article 
    CAS 

    Google Scholar 

  • Zakharov, A., Papaiconomou, C. & Johnston, M. Lymphatic vessels gain access to cerebrospinal fluid through unique association with olfactory nerves. Lymphat Res. Biol. 2, 139–146 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Gausas, R. E., Daly, T. & Fogt, F. D2-40 expression demonstrates lymphatic vessel characteristics in the dural portion of the optic nerve sheath. Ophthalmic Plast. Reconstr. Surg. 23, 32–36 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Wichmann, T. O., Damkier, H. H. & Pedersen, M. A Brief Overview of the Cerebrospinal Fluid System and Its Implications for Brain and Spinal Cord Diseases. Front. Hum. Neurosci. 15, 737217 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci. Transl. Med. 4, 147ra111 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brinker, T., Stopa, E., Morrison, J. & Klinge, P. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS 11, 10 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aspelund, A. et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212, 991–999 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koh, L., Zakharov, A. & Johnston, M. Integration of the subarachnoid space and lymphatics: is it time to embrace a new concept of cerebrospinal fluid absorption? Cerebrospinal Fluid Res. 2, 6 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sadegh, C. et al. Choroid plexus-targeted NKCC1 overexpression to treat post-hemorrhagic hydrocephalus. Neuron 111, e1594 (2023).

    Article 

    Google Scholar 

  • Xu, H. et al. Choroid plexus NKCC1 mediates cerebrospinal fluid clearance during mouse early postnatal development. Nat. Commun. 12, 447 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Proulx, S. T. Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics. Cell Mol. Life Sci. 78, 2429–2457 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, Y. et al. Impaired peri-olfactory cerebrospinal fluid clearance is associated with ageing, cognitive decline and dyssomnia. EBioMedicine 86, 104381 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, Q., Ineichen, B. V., Detmar, M. & Proulx, S. T. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat. Commun. 8, 1434 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cserr, H. F., Harling-Berg, C. J. & Knopf, P. M. Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol. 2, 269–276 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cheng, Y. & Wang, Y. J. Meningeal Lymphatic Vessels: A Drain of the Brain Involved in Neurodegeneration? Neurosci. Bull. 36, 557–560 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Decker, Y. et al. Magnetic resonance imaging of cerebrospinal fluid outflow after low-rate lateral ventricle infusion in mice. JCI Insight. 7, e150881 (2022).

  • Liu, G. et al. Direct Measurement of Cerebrospinal Fluid Production in Mice. Cell Rep. 33, 108524 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wen, Y. R., Yang, J. H., Wang, X. & Yao, Z. B. Induced dural lymphangiogenesis facilities soluble amyloid-beta clearance from brain in a transgenic mouse model of Alzheimer’s disease. Neural Regen. Res. 13, 709–716 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tarasoff-Conway, J. M. et al. Clearance systems in the brain-implications for Alzheimer disease. Nat. Rev. Neurol. 11, 457–470 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chiu, C. et al. Temporal course of cerebrospinal fluid dynamics and amyloid accumulation in the aging rat brain from three to thirty months. Fluids Barriers CNS 9, 3 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mestre, H. et al. Periarteriolar spaces modulate cerebrospinal fluid transport into brain and demonstrate altered morphology in aging and Alzheimer’s disease. Nat. Commun. 13, 3897 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zamani, A. et al. Impaired glymphatic function in the early stages of disease in a TDP-43 mouse model of amyotrophic lateral sclerosis. Transl. Neurodegener. 11, 17 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eisen, A., Nedergaard, M., Gray, E. & Kiernan, M. C. The glymphatic system and Amyotrophic lateral sclerosis. Prog. Neurobiol. 234, 102571 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, S. et al. Glymphatic dysfunction in patients with early-stage amyotrophic lateral sclerosis. Brain 147, 100–108 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Ma, Q. et al. Clearance of cerebrospinal fluid from the sacral spine through lymphatic vessels. J. Exp. Med. 216, 2492–2502 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Q. et al. Drainage of senescent astrocytes from brain via meningeal lymphatic routes. Brain Behav. Immun. 103, 85–96 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ding, X. B. et al. Impaired meningeal lymphatic drainage in patients with idiopathic Parkinson’s disease. Nat. Med. 27, 411–418 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, Z. et al. The cervical lymph node contributes to peripheral inflammation related to Parkinson’s disease. J. Neuroinflammation 20, 93 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Da Mesquita, S. et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature 560, 185–191 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Patel, T. K. et al. Dural lymphatics regulate clearance of extracellular tau from the CNS. Mol. Neurodegener. 14, 11 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bolte, A. C. et al. Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis. Nat. Commun. 11, 4524 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liao, J. et al. Improving the Function of Meningeal Lymphatic Vessels to Promote Brain Edema Absorption after Traumatic Brain Injury. J. Neurotrauma 40, 383–394 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Liu, M. et al. Exogenous interleukin 33 enhances the brain’s lymphatic drainage and toxic protein clearance in acute traumatic brain injury mice. Acta Neuropathol. Commun. 11, 61 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eide, P. K. & Ringstad, G. Glymphatic-stagnated edema induced by traumatic brain injury. Trends Pharm. Sci. 45, 388–390 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hussain, R. et al. Potentiating glymphatic drainage minimizes post-traumatic cerebral oedema. Nature 623, 992–1000 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Q. et al. Neutrophil extracellular trap-mediated impairment of meningeal lymphatic drainage exacerbates secondary hydrocephalus after intraventricular hemorrhage. Theranostics 14, 1909–1938 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yuan, J. et al. Inactivation of ERK1/2 signaling mediates dysfunction of basal meningeal lymphatic vessels in experimental subdural hematoma. Theranostics 14, 304–323 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, L. et al. Blocking cerebral lymphatic system reduces central and peripheral inflammatory response in ischemic stroke. Brain Res. 1831, 148825 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, Y. et al. Vitamin D accelerates the subdural hematoma clearance through improving the meningeal lymphatic vessel function. Mol. Cell Biochem 479, 3129–3140 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, J. et al. The Drainage Dysfunction of Meningeal Lymphatic Vessels Is Correlated with the Recurrence of Chronic Subdural Hematoma: a Prospective Study. Transl. Stroke Res. (2023).

  • Wang, X. et al. Single-Cell RNA Sequencing and Spatial Transcriptomics Reveal Pathogenesis of Meningeal Lymphatic Dysfunction after Experimental Subarachnoid Hemorrhage. Adv. Sci. 10, e2301428 (2023).

    Article 

    Google Scholar 

  • Li, D. et al. Photostimulation of brain lymphatics in male newborn and adult rodents for therapy of intraventricular hemorrhage. Nat. Commun. 14, 6104 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, X. et al. Dobutamine promotes the clearance of erythrocytes from the brain to cervical lymph nodes after subarachnoid hemorrhage in mice. Front. Pharm. 13, 1061457 (2022).

    Article 
    CAS 

    Google Scholar 

  • Tsai, H. H. et al. Functional Investigation of Meningeal Lymphatic System in Experimental Intracerebral Hemorrhage. Stroke 53, 987–998 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bai, S. et al. Cranial Bone Transport Promotes Angiogenesis, Neurogenesis, and Modulates Meningeal Lymphatic Function in Middle Cerebral Artery Occlusion Rats. Stroke 53, 1373–1385 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, X. et al. Subdural haematomas drain into the extracranial lymphatic system through the meningeal lymphatic vessels. Acta Neuropathol. Commun. 8, 16 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kovacs, M. A. et al. Vascular Endothelial Growth Factor-C Treatment Enhances Cerebrospinal Fluid Outflow during Toxoplasma gondii Brain Infection but Does Not Improve Cerebral Edema. Am. J. Pathol. 194, 225–237 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Feng, J. et al. Impaired meningeal lymphatic drainage in Listeria monocytogenes infection. Front. Immunol. 15, 1382971 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dong, H. et al. Enhanced meningeal lymphatic drainage ameliorates lipopolysaccharide-induced brain injury in aged mice. J. Neuroinflammation 21, 36 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, W. et al. Histopathological changes of the dural myeloid cells and lymphatic vessels in a mouse model of sepsis-associated encephalopathy. Exp. Neurol. 369, 114521 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lempriere, S. Meningeal lymphatics mediate drainage of viruses from the CNS. Nat. Rev. Neurol. 18, 382 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Li, X. et al. Meningeal lymphatic vessels mediate neurotropic viral drainage from the central nervous system. Nat. Neurosci. 25, 577–587 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Song, E. et al. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature 577, 689–694 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, X. et al. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res. 30, 229–243 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, C. et al. Meningeal lymphatics regulate radiotherapy efficacy through modulating anti-tumor immunity. Cell Res. 32, 543–554 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, C., Xu, H. & Luo, J. Meningeal lymphatic vasculature, a general target for glioblastoma therapy? Fundam. Res. 4, 267–269 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, M. et al. Disturbed meningeal lymphatic function associated with malignancy and progression in patients with intracranial malignant tumors. Med 4, e894 (2023).

    Article 

    Google Scholar 

  • Wu, C. H. et al. Impaired Glymphatic and Meningeal Lymphatic Functions in Patients with Chronic Migraine. Ann. Neurol. 95, 583–595 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Peng, T. et al. The cerebral lymphatic drainage system and its implications in epilepsy. J. Neurosci. Res. 102, e25267 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Baluk, P. et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J. Exp. Med. 204, 2349–2362 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yamaguchi, S. et al. The development of early human lymphatic vessels as characterized by lymphatic endothelial markers. EMBO J. 43, 868–885 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tammela, T. & Alitalo, K. Lymphangiogenesis: Molecular mechanisms and future promise. Cell 140, 460–476 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aspelund, A. et al. Lymphatic System in Cardiovascular Medicine. Circ. Res. 118, 515–530 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Srinivasan, R. S. et al. Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes Dev. 21, 2422–2432 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Antila, S. et al. Development and plasticity of meningeal lymphatic vessels. J. Exp. Med. 214, 3645–3667 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Margaris, K. N. & Black, R. A. Modelling the lymphatic system: challenges and opportunities. J. R. Soc. Interface 9, 601–612 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brakenhielm, E. & Alitalo, K. Cardiac lymphatics in health and disease. Nat. Rev. Cardiol. 16, 56–68 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ahn, J. H. et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature 572, 62–66 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Smyth, L. C. D. et al. Identification of direct connections between the dura and the brain. Nature 627, 165–173 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jacob, L. et al. Conserved meningeal lymphatic drainage circuits in mice and humans. J Exp Med. 219, e20220035 (2022).

  • Norwood, J. N. et al. Anatomical basis and physiological role of cerebrospinal fluid transport through the murine cribriform plate. Elife. 8, e44278 (2019).

  • Yoon, J. H. et al. Nasopharyngeal lymphatic plexus is a hub for cerebrospinal fluid drainage. Nature 625, 768–777 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vera Quesada, C. L., Rao, S. B., Torp, R. & Eide, P. K. Widespread distribution of lymphatic vessels in human dura mater remote from sinus veins. Front Cell Dev. Biol. 11, 1228344 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vera Quesada, C. L., Rao, S. B., Torp, R. & Eide, P. K. Immunohistochemical visualization of lymphatic vessels in human dura mater: methodological perspectives. Fluids Barriers CNS 20, 23 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jayatilaka, A. D. An electron microscopic study of sheep arachnoid granulations. J. Anat. 99, 635–649 (1965).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Absinta, M. et al. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. Elife. 6, e29738 (2017).

  • Shah, T. et al. Arachnoid granulations are lymphatic conduits that communicate with bone marrow and dura-arachnoid stroma. J. Exp. Med. 220, e20220618 (2023).

  • Scallan, J. P., Zawieja, S. D., Castorena-Gonzalez, J. A. & Davis, M. J. Lymphatic pumping: mechanics, mechanisms and malfunction. J. Physiol. 594, 5749–5768 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yin, X. et al. Compartmentalized ocular lymphatic system mediates eye-brain immunity. Nature 628, 204–211 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Delle, C., Wang, X. & Nedergaard, M. The Ocular Glymphatic System-Current Understanding and Future Perspectives. Int. J. Mol. Sci. 25, 5734 (2024).

  • Mazzitelli, J. A. et al. Cerebrospinal fluid regulates skull bone marrow niches via direct access through dural channels. Nat. Neurosci. 25, 555–560 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sevick-Muraca, E. M., Kwon, S. & Rasmussen, J. C. Emerging lymphatic imaging technologies for mouse and man. J. Clin. Invest 124, 905–914 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Proulx, S. T. et al. Expansion of the lymphatic vasculature in cancer and inflammation: new opportunities for in vivo imaging and drug delivery. J. Control Rel. 172, 550–557 (2013).

    Article 
    CAS 

    Google Scholar 

  • Munn, L. L. & Padera, T. P. Imaging the lymphatic system. Microvasc. Res. 96, 55–63 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Gruber-Rouh, T. et al. Direct lymphangiography as treatment option of lymphatic leakage: indications, outcomes and role in patient’s management. Eur. J. Radio. 83, 2167–2171 (2014).

    Article 

    Google Scholar 

  • Johnson, O. W. et al. The thoracic duct: clinical importance, anatomic variation, imaging, and embolization. Eur. Radio. 26, 2482–2493 (2016).

    Article 

    Google Scholar 

  • Toliyat, M. et al. Interventional radiology in the management of thoracic duct injuries: Anatomy, techniques and results. Clin. Imaging 42, 183–192 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Lambertz, R. et al. Ultrasound-guided lymphangiography and interventional embolization of chylous leaks following esophagectomy. Innov. Surg. Sci. 4, 85–90 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sajedi, S., Sabet, H. & Choi, H. S. Intraoperative biophotonic imaging systems for image-guided interventions. Nanophotonics 8, 99–116 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Hellingman, D. et al. A New Portable Hybrid Camera for Fused Optical and Scintigraphic Imaging: First Clinical Experiences. Clin. Nucl. Med. 41, e39–e43 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Surasi, D. S., O’Malley, J. & Bhambhvani, P. 99 mTc-Tilmanocept: A Novel Molecular Agent for Lymphatic Mapping and Sentinel Lymph Node Localization. J. Nucl. Med. Technol. 43, 87–91 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Simanek, M. & Koranda, P. SPECT/CT imaging in breast cancer – current status and challenges. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc Czech Repub. 160, 474–483 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Tew, K. & Farlow, D. SPECT/CT in Melanoma Lymphoscintigraphy. Clin. Nucl. Med. 41, 961–963 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Koyyalamudi, R. T. & Rossleigh, M. A. Lymphoscintigraphic SPECT/CT-Contralateral Axillary Sentinel Lymph Node Drainage in Breast Cancer. Clin. Nucl. Med. 42, 121–122 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Saad, Z. Z. et al. Investigating the role of SPECT/CT in dynamic sentinel lymph node biopsy for penile cancers. Eur. J. Nucl. Med. Mol. Imaging 44, 1176–1184 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kitai, T., Inomoto, T., Miwa, M. & Shikayama, T. Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer. Breast Cancer 12, 211–215 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Unno, N. et al. Preliminary experience with a novel fluorescence lymphography using indocyanine green in patients with secondary lymphedema. J. Vasc. Surg. 45, 1016–1021 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Sevick-Muraca, E. M. et al. Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study. Radiology 246, 734–741 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Rockson, S. G. A Role for Near Infrared Fluorescent Imaging in the Evaluation of Lymphatic Function. Lymphat Res. Biol. 15, 203 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Zeltzer, A. A. et al. MR lymphography in patients with upper limb lymphedema: The GPS for feasibility and surgical planning for lympho-venous bypass. J. Surg. Oncol. 118, 407–415 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Neligan, P. C., Kung, T. A. & Maki, J. H. MR lymphangiography in the treatment of lymphedema. J. Surg. Oncol. 115, 18–22 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Kajita, H. et al. Photoacoustic lymphangiography. J. Surg. Oncol. 121, 48–50 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Soergel, P. et al. Sentinel Lymphadenectomy in Vulvar Cancer Using Near-Infrared Fluorescence From Indocyanine Green Compared With Technetium 99 m Nanocolloid. Int. J. Gynecol. Cancer 27, 805–812 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Pavlista, D. & Eliska, O. Analysis of direct oil contrast lymphography of upper limb lymphatics traversing the axilla – a lesson from the past – contribution to the concept of axillary reverse mapping. Eur. J. Surg. Oncol. 38, 390–394 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mellor, R. H. et al. Lymphatic dysfunction, not aplasia, underlies Milroy disease. Microcirculation 17, 281–296 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pappalardo, M. & Cheng, M. H. Lymphoscintigraphy for the diagnosis of extremity lymphedema: Current controversies regarding protocol, interpretation, and clinical application. J. Surg. Oncol. 121, 37–47 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Moncayo, V. M., Aarsvold, J. N. & Alazraki, N. P. Lymphoscintigraphy and sentinel nodes. J. Nucl. Med. 56, 901–907 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Naaman, Y. et al. The Added Value of SPECT/CT in Sentinel Lymph Nodes Mapping for Endometrial Carcinoma. Ann. Surg. Oncol. 23, 450–455 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Iimura, T. et al. Estimating Lymphodynamic Conditions and Lymphovenous Anastomosis Efficacy Using (99m)Tc-phytate Lymphoscintigraphy with SPECT-CT in Patients with Lower-limb Lymphedema. Plast. Reconstr. Surg. Glob. Open 3, e404 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mazzei, M. A. et al. High-resolution MR lymphangiography for planning lymphaticovenous anastomosis treatment: a single-centre experience. Radio. Med. 122, 918–927 (2017).

    Article 

    Google Scholar 

  • Kajita, H. & Kishi, K. High-Resolution Imaging of Lymphatic Vessels with Photoacoustic Lymphangiography. Radiology 292, 35 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Ringstad, G. & Eide, P. K. Glymphatic-lymphatic coupling: assessment of the evidence from magnetic resonance imaging of humans. Cell Mol. Life Sci. 81, 131 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, B. et al. NIR-II nanoprobes for investigating the glymphatic system function under anesthesia and stroke injury. J. Nanobiotechnol. 22, 200 (2024).

    Article 
    CAS 

    Google Scholar 

  • Yang, F. et al. Advancing insights into in vivo meningeal lymphatic vessels with stereoscopic wide-field photoacoustic microscopy. Light Sci. Appl 13, 96 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, C. H. et al. Noninvasive Characterization of Human Glymphatics and Meningeal Lymphatics in an in vivo Model of Blood-Brain Barrier Leakage. Ann. Neurol. 89, 111–124 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sennfalt, S. et al. Visualising and semi-quantitatively measuring brain fluid pathways, including meningeal lymphatics, in humans using widely available MRI techniques. J. Cereb. Blood Flow. Metab. 43, 1779–1795 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, M. et al. Evaluation of glymphatic-meningeal lymphatic system with intravenous gadolinium-based contrast-enhancement in cerebral small-vessel disease. Eur. Radio. 33, 6096–6106 (2023).

    Article 
    CAS 

    Google Scholar 

  • Wu, Y. et al. Borneol-driven meningeal lymphatic drainage clears amyloid-beta peptide to attenuate Alzheimer-like phenotype in mice. Theranostics 13, 106–124 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Albayram, M. S. et al. Non-invasive MR imaging of human brain lymphatic networks with connections to cervical lymph nodes. Nat. Commun. 13, 203 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Choe, K. et al. Intravital three-photon microscopy allows visualization over the entire depth of mouse lymph nodes. Nat. Immunol. 23, 330–340 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xie, L. et al. Sleep drives metabolite clearance from the adult brain. Science 342, 373–377 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Louveau, A. et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat. Neurosci. 21, 1380–1391 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, F. et al. Light-sheet microscopy in the near-infrared II window. Nat. Methods 16, 545–552 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tian, R. et al. Albumin-chaperoned cyanine dye yields superbright NIR-II fluorophore with enhanced pharmacokinetics. Sci. Adv. 5, eaaw0672, (2019).

  • Li, C. et al. Advanced Fluorescence Imaging Technology in the Near-Infrared-II Window for Biomedical Applications. J. Am. Chem. Soc. 142, 14789–14804 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cardinell, K. et al. A novel photoacoustic-fluorescent contrast agent for quantitative imaging of lymphatic drainage. Photoacoustics 21, 100239 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, W. et al. Near-Infrared-II Imaging Revealed Hypothermia Regulates Neuroinflammation Following Brain Injury by Increasing the Glymphatic Influx. ACS Nano 18, 13836–13848 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bechet, N. B. et al. Light sheet fluorescence microscopy of optically cleared brains for studying the glymphatic system. J. Cereb. Blood Flow. Metab. 40, 1975–1986 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Keil, S. A. et al. Dynamic infrared imaging of cerebrospinal fluid tracer influx into the brain. Neurophotonics 9, 031915 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, Q. et al. Rapid lymphatic efflux limits cerebrospinal fluid flow to the brain. Acta Neuropathol. 137, 151–165 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Gu, X. et al. Clearance of two organic nanoparticles from the brain via the paravascular pathway. J. Control Rel. 322, 31–41 (2020).

    Article 
    CAS 

    Google Scholar 

  • Miyakoshi, L. M. et al. The state of brain activity modulates cerebrospinal fluid transport. Prog. Neurobiol. 229, 102512 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Kajita, H. et al. Visualization of Lymphatic Vessels Using Photoacoustic Imaging. Keio J. Med. 70, 82–92 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Watanabe, S. et al. Photoacoustic lymphangiography is a possible alternative for lymphedema staging. J. Vasc. Surg. Venous Lymphat Disord. 10, e1312 (2022).

    Google Scholar 

  • Suzuki, Y. et al. Subcutaneous Lymphatic Vessels in the Lower Extremities: Comparison between Photoacoustic Lymphangiography and Near-Infrared Fluorescence Lymphangiography. Radiology 295, 469–474 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Lillis, A. P. & Krishnamurthy, R. Photoacoustic Imaging Addresses a Long-standing Challenge in Lymphedema. Radiology 295, 475–477 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Suzuki, Y. et al. Measurement of lymphatic vessel depth using photoacoustic imaging. Lasers Surg. Med. 55, 164–168 (2023).

    Article 
    PubMed 

    Google Scholar 

  • van Heumen, S. et al. Imaging of the Lymphatic Vessels for Surgical Planning: A Systematic Review. Ann. Surg. Oncol. 30, 462–479 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Wang, Z. et al. Monitoring the perivascular cerebrospinal fluid dynamics of the glymphatic pathway using co-localized photoacoustic microscopy. Opt. Lett. 48, 2265–2268 (2023).

    Article 
    PubMed 

    Google Scholar 

  • He, X. Z. et al. High-resolution 3D demonstration of regional heterogeneity in the glymphatic system. J. Cereb. Blood Flow. Metab. 42, 2017–2031 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Erturk, A. et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat. Protoc. 7, 1983–1995 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xie, Q. et al. Rewiring the Brain: The Next Frontier in Supermicrosurgery. Plast. Reconstr. Surg. 153, 494e–495e (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Wu, R. et al. Safety and efficacy of intracranial vascularized submental lymph node transfer for treating hydrocephalus. J. Surg. Oncol. 129, 26–31 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rustenhoven, J. et al. Functional characterization of the dural sinuses as a neuroimmune interface. Cell 184, e1027 (2021).

    Article 

    Google Scholar 

  • Yang, J. F. et al. Understanding lymphangiogenesis in knockout models, the cornea, and ocular diseases for the development of therapeutic interventions. Surv. Ophthalmol. 61, 272–296 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Matsushita, J. et al. Fluorescence and Bioluminescence Imaging of Angiogenesis in Flk1-Nano-lantern Transgenic Mice. Sci. Rep. 7, 46597 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kang, G. J. et al. Intravital Imaging Reveals Dynamics of Lymphangiogenesis and Valvulogenesis. Sci. Rep. 6, 19459 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Calvo, C. F. et al. Vascular endothelial growth factor receptor 3 directly regulates murine neurogenesis. Genes Dev. 25, 831–844 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, J. et al. Simultaneous in vivo imaging of blood and lymphatic vessel growth in Prox1-GFP/Flk1::myr-mCherry mice. FEBS J. 282, 1458–1467 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Okabe, K. et al. Neurons limit angiogenesis by titrating VEGF in retina. Cell 159, 584–596 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhong, W. et al. Prox1-GFP/Flt1-DsRed transgenic mice: an animal model for simultaneous live imaging of angiogenesis and lymphangiogenesis. Angiogenesis 20, 581–598 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oliver, G., Kipnis, J., Randolph, G. J. & Harvey, N. L. The Lymphatic Vasculature in the 21(st) Century: Novel Functional Roles in Homeostasis and Disease. Cell 182, 270–296 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bradbury, M. W. & Cole, D. F. The role of the lymphatic system in drainage of cerebrospinal fluid and aqueous humour. J. Physiol. 299, 353–365 (1980).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Knopf, P. M. et al. Physiology and immunology of lymphatic drainage of interstitial and cerebrospinal fluid from the brain. Neuropathol. Appl Neurobiol. 21, 175–180 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jacob, L. et al. Anatomy and function of the vertebral column lymphatic network in mice. Nat. Commun. 10, 4594 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, L. et al. Deep cervical lymph node ligation aggravates AD-like pathology of APP/PS1 mice. Brain Pathol. 29, 176–192 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Da Mesquita, S. et al. Meningeal lymphatics affect microglia responses and anti-Abeta immunotherapy. Nature 593, 255–260 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, X. et al. Cerebral amyloid angiopathy is associated with glymphatic transport reduction and time-delayed solute drainage along the neck arteries. Nat. Aging 2, 214–223 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cao, X. et al. Deletion of aquaporin-4 aggravates brain pathology after blocking of the meningeal lymphatic drainage. Brain Res. Bull. 143, 83–96 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pu, T. et al. Persistent Malfunction of Glymphatic and Meningeal Lymphatic Drainage in a Mouse Model of Subarachnoid Hemorrhage. Exp. Neurobiol. 28, 104–118 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zou, W. et al. Blocking meningeal lymphatic drainage aggravates Parkinson’s disease-like pathology in mice overexpressing mutated alpha-synuclein. Transl. Neurodegener. 8, 7 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oehmichen, M., Gruninger, H., Wietholter, H. & Gencic, M. Lymphatic efflux of intracerebrally injected cells. Acta Neuropathol. 45, 61–65 (1979).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Oehmichen, M., Wietholter, H., Gruninger, H. & Gencic, M. Destruction of intracerebrally applied red blood cells in cervical lymph nodes. Experimental investigations. Forensic. Sci. Int. 21, 43–57 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, J. et al. Meningeal lymphatics clear erythrocytes that arise from subarachnoid hemorrhage. Nat. Commun. 11, 3159 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Duan, M. et al. Targeting brain-peripheral immune responses for secondary brain injury after ischemic and hemorrhagic stroke. J. Neuroinflammation 21, 102 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kipnis, J. Multifaceted interactions between adaptive immunity and the central nervous system. Science 353, 766–771 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Louveau, A., Harris, T. H. & Kipnis, J. Revisiting the Mechanisms of CNS Immune Privilege. Trends Immunol. 36, 569–577 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mokbel, A. Y., Burns, M. P. & Main, B. S. The contribution of the meningeal immune interface to neuroinflammation in traumatic brain injury. J. Neuroinflammation 21, 135 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shu, K. et al. Altered Brain Glymphatic Function at Diffusion-Tensor MRI in Pre-cirrhotic Metabolic Dysfunction-Associated Fatty Liver Disease. Acad. Radio. 31, 4946–4954 (2024).

    Article 

    Google Scholar 

  • Frederick, N. & Louveau, A. Meningeal lymphatics, immunity and neuroinflammation. Curr. Opin. Neurobiol. 62, 41–47 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Olate-Briones, A. et al. The meningeal lymphatic vasculature in neuroinflammation. FASEB J. 36, e22276 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tavares, G. A. & Louveau, A. Meningeal Lymphatics: An Immune Gateway for the Central Nervous System. Cells. 10, 3385 (2021).

  • Laaker, C. et al. Immune cells as messengers from the CNS to the periphery: the role of the meningeal lymphatic system in immune cell migration from the CNS. Front Immunol. 14, 1233908 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mestre, H., Mori, Y. & Nedergaard, M. The Brain’s Glymphatic System: Current Controversies. Trends Neurosci. 43, 458–466 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Planas, A. M. et al. Brain-derived antigens in lymphoid tissue of patients with acute stroke. J. Immunol. 188, 2156–2163 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tsuchida, T. et al. Autoreactive CD8 + T-cell responses to human myelin protein-derived peptides. Proc. Natl Acad. Sci. USA 91, 10859–10863 (1994).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rojas, O. L. et al. Recirculating Intestinal IgA-Producing Cells Regulate Neuroinflammation via IL-10. Cell 177, 492–493 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brioschi, S. et al. Heterogeneity of meningeal B cells reveals a lymphopoietic niche at the CNS borders. Science. 373, eabf9277 (2021).

  • Rua, R. & McGavern, D. B. Advances in Meningeal Immunity. Trends Mol. Med 24, 542–559 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Da Mesquita, S. et al. Aging-associated deficit in CCR7 is linked to worsened glymphatic function, cognition, neuroinflammation, and beta-amyloid pathology. Sci Adv. 7, eabe4601 (2021).

  • Rustenhoven, J. et al. Age-related alterations in meningeal immunity drive impaired CNS lymphatic drainage. J. Exp. Med. 220, e20221929 (2023).

  • Reines, I. et al. Topical application of sphingosine-1-phosphate and FTY720 attenuate allergic contact dermatitis reaction through inhibition of dendritic cell migration. J. Invest Dermatol. 129, 1954–1962 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cugurra, A. et al. Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. Science. 373, eabf7844 (2021).

  • Drieu, A. et al. Parenchymal border macrophages regulate the flow dynamics of the cerebrospinal fluid. Nature 611, 585–593 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chang, J. et al. Characteristic Features of Deep Brain Lymphatic Vessels and Their Regulation by Chronic Stress. Research 6, 0120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, J. et al. Cerebrovascular Injuries Induce Lymphatic Invasion into Brain Parenchyma to Guide Vascular Regeneration in Zebrafish. Dev. Cell 49, e695 (2019).

    Article 

    Google Scholar 

  • Siret, C. et al. Deciphering the heterogeneity of the Lyve1(+) perivascular macrophages in the mouse brain. Nat. Commun. 13, 7366 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • An, C. et al. Molecular dialogs between the ischemic brain and the peripheral immune system: dualistic roles in injury and repair. Prog. Neurobiol. 115, 6–24 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, J. B., Lim, C. M., Yu, Y. M. & Lee, J. K. Induction and subcellular localization of high-mobility group box-1 (HMGB1) in the postischemic rat brain. J. Neurosci. Res. 86, 1125–1131 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bianchi, R., Kastrisianaki, E., Giambanco, I. & Donato, R. S100B protein stimulates microglia migration via RAGE-dependent up-regulation of chemokine expression and release. J. Biol. Chem. 286, 7214–7226 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, M. et al. ATP induces mild hypothermia in rats but has a strikingly detrimental impact on focal cerebral ischemia. J. Cereb. Blood Flow. Metab. 33, e1–e10 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bourhy, L. et al. Neuro-Inflammatory Response and Brain-Peripheral Crosstalk in Sepsis and Stroke. Front Immunol. 13, 834649 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Monsour, M. & Borlongan, C. V. The central role of peripheral inflammation in ischemic stroke. J. Cereb. Blood Flow. Metab. 43, 622–641 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, H. et al. Neuroinflammation and peripheral immunity: Focus on ischemic stroke. Int. Immunopharmacol. 120, 110332 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yu, H. et al. The “Dialogue” Between Central and Peripheral Immunity After Ischemic Stroke: Focus on Spleen. Front. Immunol. 12, 792522 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jian, Z. et al. The Involvement and Therapy Target of Immune Cells After Ischemic Stroke. Front. Immunol. 10, 2167 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, W., Zhao, Q., Li, C. & Xu, Y. Neuroinflammation and brain-peripheral interaction in ischemic stroke: A narrative review. Front. Immunol. 13, 1080737 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xie, L., He, M., Ying, C. & Chu, H. Mechanisms of inflammation after ischemic stroke in brain-peripheral crosstalk. Front. Mol. Neurosci. 17, 1400808 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, G. A. et al. CCN1 Is a Therapeutic Target for Reperfused Ischemic Brain Injury. Transl. Stroke Res. (2024).

  • Wu, F. et al. Systemic immune responses after ischemic stroke: From the center to the periphery. Front. Immunol. 13, 911661 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Esposito, E. et al. Brain-to-cervical lymph node signaling after stroke. Nat. Commun. 10, 5306 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, X. et al. Surgery induces neurocognitive disorder via neuroinflammation and glymphatic dysfunction in middle-aged mice with brain lymphatic drainage impairment. Front. Neurosci. 18, 1426718 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hsu, M. et al. Neuroinflammation-induced lymphangiogenesis near the cribriform plate contributes to drainage of CNS-derived antigens and immune cells. Nat. Commun. 10, 229 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hsu, M. et al. Neuroinflammation creates an immune regulatory niche at the meningeal lymphatic vasculature near the cribriform plate. Nat. Immunol. 23, 581–593 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spera, I. et al. Open pathways for cerebrospinal fluid outflow at the cribriform plate along the olfactory nerves. EBioMedicine 91, 104558 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fitzpatrick, Z. et al. Venous-plexus-associated lymphoid hubs support meningeal humoral immunity. Nature 628, 612–619 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kirthivasan, N. & Cyster, J. G. Lymphoid tissue on the mind. Trends Immunol. 45, 325–326 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Semyachkina-Glushkovskaya, O. et al. Intranasal Delivery of Liposomes to Glioblastoma by Photostimulation of the Lymphatic System. Pharmaceutics. 15, 36 (2022).

  • Makinen, T. Lymphatic vessels at the base of the mouse brain provide direct drainage to the periphery. Nature 572, 34–35 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Maisel, K., Sasso, M. S., Potin, L. & Swartz, M. A. Exploiting lymphatic vessels for immunomodulation: Rationale, opportunities, and challenges. Adv. Drug Deliv. Rev. 114, 43–59 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qi, Y. et al. New trends in brain tumor immunity with the opportunities of lymph nodes targeted drug delivery. J. Nanobiotechnol. 21, 254 (2023).

    Article 

    Google Scholar 

  • Zhao, P., Le, Z., Liu, L. & Chen, Y. Therapeutic Delivery to the Brain via the Lymphatic Vasculature. Nano Lett. 20, 5415–5420 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liau, L. M. et al. Association of Autologous Tumor Lysate-Loaded Dendritic Cell Vaccination With Extension of Survival Among Patients With Newly Diagnosed and Recurrent Glioblastoma: A Phase 3 Prospective Externally Controlled Cohort Trial. JAMA Oncol. 9, 112–121 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Irschick, R., Siemon, C. & Brenner, E. The history of anatomical research of lymphatics – From the ancient times to the end of the European Renaissance. Ann. Anat. 223, 49–69 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Breslin, J. W. et al. Lymphatic Vessel Network Structure and Physiology. Compr. Physiol. 9, 207–299 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, Z. et al. Lymphatic vessel: origin, heterogeneity, biological functions, and therapeutic targets. Signal Transduct. Target Ther. 9, 9 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Natale, G., Bocci, G. & Ribatti, D. Scholars and scientists in the history of the lymphatic system. J. Anat. 231, 417–429 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Makinen, T., Norrmen, C. & Petrova, T. V. Molecular mechanisms of lymphatic vascular development. Cell Mol. Life Sci. 64, 1915–1929 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simeroth, S. & Yu, P. The role of lymphatic endothelial cell metabolism in lymphangiogenesis and disease. Front. Cardiovasc. Med. 11, 1392816 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Montenegro-Navarro, N., Garcia-Baez, C. & Garcia-Caballero, M. Molecular and metabolic orchestration of the lymphatic vasculature in physiology and pathology. Nat. Commun. 14, 8389 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deng, H. et al. Current Status of Lymphangiogenesis: Molecular Mechanism, Immune Tolerance, and Application Prospect. Cancers. 15, 1169 (2023).

  • Da Mesquita, S., Fu, Z. & Kipnis, J. The Meningeal Lymphatic System: A New Player in Neurophysiology. Neuron 100, 375–388 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Joukov, V. et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 15, 1751 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jeltsch, M. et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 276, 1423–1425 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nurmi, H. et al. VEGF-C is required for intestinal lymphatic vessel maintenance and lipid absorption. EMBO Mol. Med. 7, 1418–1425 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karkkainen, M. J. et al. Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema. Nat. Genet. 25, 153–159 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hogan, B. M. et al. Ccbe1 is required for embryonic lymphangiogenesis and venous sprouting. Nat. Genet. 41, 396–398 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bos, F. L. et al. CCBE1 is essential for mammalian lymphatic vascular development and enhances the lymphangiogenic effect of vascular endothelial growth factor-C in vivo. Circ. Res. 109, 486–491 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zou, Z. et al. The secreted lymphangiogenic factor CCBE1 is essential for fetal liver erythropoiesis. Blood 121, 3228–3236 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hagerling, R. et al. A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy. EMBO J. 32, 629–644 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jeltsch, M. et al. CCBE1 enhances lymphangiogenesis via A disintegrin and metalloprotease with thrombospondin motifs-3-mediated vascular endothelial growth factor-C activation. Circulation 129, 1962–1971 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Le Guen, L. et al. Ccbe1 regulates Vegfc-mediated induction of Vegfr3 signaling during embryonic lymphangiogenesis. Development 141, 1239–1249 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Bui, H. M. et al. Proteolytic activation defines distinct lymphangiogenic mechanisms for VEGFC and VEGFD. J. Clin. Invest. 126, 2167–2180 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karkkainen, M. J. et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat. Immunol. 5, 74–80 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Adams, R. H. & Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 8, 464–478 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kajiya, K., Hirakawa, S. & Detmar, M. Vascular endothelial growth factor-A mediates ultraviolet B-induced impairment of lymphatic vessel function. Am. J. Pathol. 169, 1496–1503 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kuchler, A. M. et al. Development of the zebrafish lymphatic system requires VEGFC signaling. Curr. Biol. 16, 1244–1248 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Wang, G. et al. Specific fibroblast subpopulations and neuronal structures provide local sources of Vegfc-processing components during zebrafish lymphangiogenesis. Nat. Commun. 11, 2724 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ocskay, Z. et al. CCBE1 regulates the development and prevents the age-dependent regression of meningeal lymphatics. Biomed. Pharmacother. 170, 116032 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boisserand, L. S. B. et al. VEGF-C prophylaxis favors lymphatic drainage and modulates neuroinflammation in a stroke model. J Exp Med. 221, e20221983 (2024).

  • Merlini, A. et al. Distinct roles of the meningeal layers in CNS autoimmunity. Nat. Neurosci. 25, 887–899 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kataru, R. P. et al. Lymphatic-specific intracellular modulation of receptor tyrosine kinase signaling improves lymphatic growth and function. Sci Signal. 14, eabc0836 (2021).

  • Alitalo, K. The lymphatic vasculature in disease. Nat. Med. 17, 1371–1380 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Escobedo, N. & Oliver, G. Lymphangiogenesis: Origin, Specification, and Cell Fate Determination. Annu. Rev. Cell Dev. Biol. 32, 677–691 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Thomas, S. N., Rohner, N. A. & Edwards, E. E. Implications of Lymphatic Transport to Lymph Nodes in Immunity and Immunotherapy. Annu. Rev. Biomed. Eng. 18, 207–233 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ujiie, N. & Kume, T. Mechanical forces in lymphatic vessel development: Focus on transcriptional regulation. Front. Physiol. 13, 1066460 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sabine, A. et al. Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation. Dev. Cell 22, 430–445 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hernandez Vasquez, M. N. et al. Transcription factor FOXP2 is a flow-induced regulator of collecting lymphatic vessels. EMBO J. 40, e107192 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liebl, J. et al. Cdk5 controls lymphatic vessel development and function by phosphorylation of Foxc2. Nat. Commun. 6, 7274 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kazenwadel, J. et al. GATA2 is required for lymphatic vessel valve development and maintenance. J. Clin. Invest 125, 2979–2994 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brice, G. et al. Analysis of the phenotypic abnormalities in lymphoedema-distichiasis syndrome in 74 patients with FOXC2 mutations or linkage to 16q24. J. Med. Genet. 39, 478–483 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dagenais, S. L. et al. Foxc2 is expressed in developing lymphatic vessels and other tissues associated with lymphedema-distichiasis syndrome. Gene Expr. Patterns 4, 611–619 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ye, T. et al. Borneol regulates meningeal lymphatic valve plasticity to clear Abeta aggregates in the prevention of AD-like symptoms. Phytomedicine 130, 155753 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Scallan, J. P. et al. Foxo1 deletion promotes the growth of new lymphatic valves. J Clin Invest. 131, e142341 (2021).

  • Niimi, K., Nakae, J., Inagaki, S. & Furuyama, T. FOXO1 represses lymphatic valve formation and maintenance via PRDM1. Cell Rep. 37, 110048 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kume, T. Lymphatic vessel development: fluid flow and valve-forming cells. J. Clin. Invest 125, 2924–2926 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sweet, D. T. et al. Lymph flow regulates collecting lymphatic vessel maturation in vivo. J. Clin. Invest 125, 2995–3007 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bazigou, E. & Makinen, T. Flow control in our vessels: vascular valves make sure there is no way back. Cell Mol. Life Sci. 70, 1055–1066 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xiao, B. Levering Mechanically Activated Piezo Channels for Potential Pharmacological Intervention. Annu Rev. Pharm. Toxicol. 60, 195–218 (2020).

    Article 
    CAS 

    Google Scholar 

  • Nonomura, K. et al. Mechanically activated ion channel PIEZO1 is required for lymphatic valve formation. Proc. Natl Acad. Sci. USA 115, 12817–12822 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Choi, D. et al. Piezo1 incorporates mechanical force signals into the genetic program that governs lymphatic valve development and maintenance. JCI Insight. 4, e125068 (2019).

  • Choi, D. et al. Piezo1-Regulated Mechanotransduction Controls Flow-Activated Lymphatic Expansion. Circ. Res. 131, e2–e21 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Choi, D. et al. Laminar flow downregulates Notch activity to promote lymphatic sprouting. J. Clin. Invest 127, 1225–1240 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martin-Almedina, S., Mansour, S. & Ostergaard, P. Human phenotypes caused by PIEZO1 mutations; one gene, two overlapping phenotypes? J. Physiol. 596, 985–992 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Syeda, R. et al. Chemical activation of the mechanotransduction channel Piezo1. Elife. 4, e07369 (2015).

  • Jantti, H. et al. Microglial amyloid beta clearance is driven by PIEZO1 channels. J. Neuroinflammation 19, 147 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Munk, A. S. et al. PDGF-B Is Required for Development of the Glymphatic System. Cell Rep. 26, e2953 (2019).

    Article 

    Google Scholar 

  • Xiang, T. et al. Effects of increased intracranial pressure on cerebrospinal fluid influx, cerebral vascular hemodynamic indexes, and cerebrospinal fluid lymphatic efflux. J. Cereb. Blood Flow. Metab. 42, 2287–2302 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jukkola, J. et al. Blood pressure lowering enhances cerebrospinal fluid efflux to the systemic circulation primarily via the lymphatic vasculature. Fluids Barriers CNS 21, 12 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stevenson, T. J., Hitpass Romero, K. & Rustenhoven, J. Meningeal lymphatics stem cognitive decline in craniosynostosis. Cell Stem Cell 30, 1395–1397 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aspelund, A. & Alitalo, K. Yoda1 opens the lymphatic path for craniosynostosis therapy. J Clin Invest. 134, e176858 (2024).

  • Planas-Paz, L. et al. Mechanoinduction of lymph vessel expansion. EMBO J. 31, 788–804 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Choi, D. et al. Piezo1 regulates meningeal lymphatic vessel drainage and alleviates excessive CSF accumulation. Nat. Neurosci. 27, 913–926 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miao, A. et al. Brain clearance is reduced during sleep and anesthesia. Nat. Neurosci. 27, 1046–1050 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fyfe, I. Brain clearance not increased during sleep. Nat. Rev. Neurol. 20, 379 (2024).

    PubMed 

    Google Scholar 

  • Malkki, H. Alzheimer disease: Sleep alleviates AD-related neuropathological processes. Nat. Rev. Neurol. 9, 657 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Kress, B. T. et al. Impairment of paravascular clearance pathways in the aging brain. Ann. Neurol. 76, 845–861 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, L. et al. Skull progenitor cell-driven meningeal lymphatic restoration improves neurocognitive functions in craniosynostosis. Cell Stem Cell 30, e1477 (2023).

    Article 

    Google Scholar 

  • Chen, Z. et al. MAP kinases. Chem. Rev. 101, 2449–2476 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Deng, Y., Atri, D., Eichmann, A. & Simons, M. Endothelial ERK signaling controls lymphatic fate specification. J. Clin. Invest 123, 1202–1215 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gibot, L. et al. Cell-based approach for 3D reconstruction of lymphatic capillaries in vitro reveals distinct functions of HGF and VEGF-C in lymphangiogenesis. Biomaterials 78, 129–139 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sasaki, J. I. et al. VE-Cadherin and Anastomosis of Blood Vessels Formed by Dental Stem Cells. J. Dent. Res. 99, 437–445 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yamaguchi, K., Sudo, H. & Imai, K. Vascular endothelial growth factor signaling in VE-cadherin expression and tube-like formation by rheumatoid arthritic synovial fibroblast-like cells. Biochem. Biophys. Res. Commun. 508, 405–409 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Norden, P. R. & Kume, T. Molecular Mechanisms Controlling Lymphatic Endothelial Junction Integrity. Front. Cell Dev. Biol. 8, 627647 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Nakashima, B. J. & Hong, Y. K. VE-Cadherin: A Critical Sticking Point for Lymphatic System Maintenance: Role of VE-Cadherin in Lymphatic Maintenance. Circ. Res. 130, 24–26 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, F., Zarkada, G., Yi, S. & Eichmann, A. Lymphatic Endothelial Cell Junctions: Molecular Regulation in Physiology and Diseases. Front Physiol. 11, 509 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meng, Y. et al. Temporospatial inhibition of Erk signaling is required for lymphatic valve formation. Sig. Transduct. Target Ther. 8, 342 (2023).

    Article 
    CAS 

    Google Scholar 

  • Shrestha, N. et al. delta-Catenin Increases the Stability of EGFR by Decreasing c-Cbl Interaction and Enhances EGFR/Erk1/2 Signaling in Prostate Cancer. Mol. Cells 41, 320–330 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Okuda, K. S. et al. 3,4-Difluorobenzocurcumin Inhibits Vegfc-Vegfr3-Erk Signalling to Block Developmental Lymphangiogenesis in Zebrafish. Pharmaceuticals 14, 614 (2021).

  • Greco, R. et al. Antagonism of CGRP Receptor: Central and Peripheral Mechanisms and Mediators in an Animal Model of Chronic Migraine. Cells. 11, 3092 (2022).

  • Brain, S. D. et al. Calcitonin gene-related peptide is a potent vasodilator. Nature 313, 54–56 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pawlak, J. B., Wetzel-Strong, S. E., Dunn, M. K. & Caron, K. M. Cardiovascular effects of exogenous adrenomedullin and CGRP in Ramp and Calcrl deficient mice. Peptides 88, 1–7 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Petrova, T. V. et al. Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J. 21, 4593–4599 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hirakawa, S. et al. Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am. J. Pathol. 162, 575–586 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mackie, D. I. et al. hCALCRL mutation causes autosomal recessive nonimmune hydrops fetalis with lymphatic dysplasia. J. Exp. Med. 215, 2339–2353 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dackor, R. T. et al. Hydrops fetalis, cardiovascular defects, and embryonic lethality in mice lacking the calcitonin receptor-like receptor gene. Mol. Cell Biol. 26, 2511–2518 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davis, R. B. et al. Lymphatic deletion of calcitonin receptor-like receptor exacerbates intestinal inflammation. JCI Insight 2, e92465 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davis, R. B. et al. Calcitonin-Receptor-Like Receptor Signaling Governs Intestinal Lymphatic Innervation and Lipid Uptake. ACS Pharm. Transl. Sci. 2, 114–121 (2019).

    Article 
    CAS 

    Google Scholar 

  • McLatchie, L. M. et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393, 333–339 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kamitani, S. et al. The RAMP2/CRLR complex is a functional adrenomedullin receptor in human endothelial and vascular smooth muscle cells. FEBS Lett. 448, 111–114 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hay, D. L., Poyner, D. R. & Sexton, P. M. GPCR modulation by RAMPs. Pharm. Ther. 109, 173–197 (2006).

    Article 
    CAS 

    Google Scholar 

  • Woolley, M. J. & Conner, A. C. Comparing the molecular pharmacology of CGRP and adrenomedullin. Curr. Protein Pept. Sci. 14, 358–374 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mishima, T. et al. RAMP1 signaling improves lymphedema and promotes lymphangiogenesis in mice. J. Surg. Res. 219, 50–60 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Johnson, K. W., Morin, S. M., Wroblewski, V. J. & Johnson, M. P. Peripheral and central nervous system distribution of the CGRP neutralizing antibody [(125)I] galcanezumab in male rats. Cephalalgia 39, 1241–1248 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Mikhailov, N. et al. The role of the meningeal lymphatic system in local meningeal inflammation and trigeminal nociception. Sci. Rep. 12, 8804 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nelson-Maney, N. P. et al. Meningeal lymphatic CGRP signaling governs pain via cerebrospinal fluid efflux and neuroinflammation in migraine models. J. Clin. Invest. 134, e175616 (2024).

  • Fritz-Six, K. L., Dunworth, W. P., Li, M. & Caron, K. M. Adrenomedullin signaling is necessary for murine lymphatic vascular development. J. Clin. Invest 118, 40–50 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huisa, B. N. et al. Transcranial laser therapy for acute ischemic stroke: a pooled analysis of NEST-1 and NEST-2. Int. J. Stroke 8, 315–320 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Hamblin, M. R. Photobiomodulation for traumatic brain injury and stroke. J. Neurosci. Res. 96, 731–743 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Morries, L. D., Cassano, P. & Henderson, T. A. Treatments for traumatic brain injury with emphasis on transcranial near-infrared laser phototherapy. Neuropsychiatr. Dis. Treat. 11, 2159–2175 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Semyachkina-Glushkovskaya, O. et al. Photobiomodulation of lymphatic drainage and clearance: perspective strategy for augmentation of meningeal lymphatic functions. Biomed. Opt. Express 11, 725–734 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dirican, A. et al. The short-term effects of low-level laser therapy in the management of breast-cancer-related lymphedema. Support Care Cancer 19, 685–690 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Karu, T. I., Pyatibrat, L. V. & Afanasyeva, N. I. Cellular effects of low power laser therapy can be mediated by nitric oxide. Lasers Surg. Med 36, 307–314 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Cassano, P. et al. Review of transcranial photobiomodulation for major depressive disorder: targeting brain metabolism, inflammation, oxidative stress, and neurogenesis. Neurophotonics 3, 031404 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xuan, W. et al. Low-level laser therapy for traumatic brain injury in mice increases brain derived neurotrophic factor (BDNF) and synaptogenesis. J. Biophotonics 8, 502–511 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tian, F., Hase, S. N., Gonzalez-Lima, F. & Liu, H. Transcranial laser stimulation improves human cerebral oxygenation. Lasers Surg. Med. 48, 343–349 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zinchenko, E. et al. Pilot study of transcranial photobiomodulation of lymphatic clearance of beta-amyloid from the mouse brain: breakthrough strategies for non-pharmacologic therapy of Alzheimer’s disease. Biomed. Opt. Express 10, 4003–4017 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, M. et al. Non-invasive modulation of meningeal lymphatics ameliorates ageing and Alzheimer’s disease-associated pathology and cognition in mice. Nat. Commun. 15, 1453 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salehpour, F., Khademi, M., Bragin, D. E. & DiDuro, J. O. Photobiomodulation Therapy and the Glymphatic System: Promising Applications for Augmenting the Brain Lymphatic Drainage System. Int. J. Mol. Sci. 23, 2975 (2022).

  • Broman, M. T., Mehta, D. & Malik, A. B. Cdc42 regulates the restoration of endothelial adherens junctions and permeability. Trends Cardiovasc Med 17, 151–156 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • de Freitas, L. F. & Hamblin, M. R. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE J. Sel. Top. Quantum Electron. 22, 7000417 (2016).

  • Waypa, G. B., Smith, K. A. & Schumacker, P. T. O2 sensing, mitochondria and ROS signaling: The fog is lifting. Mol. Asp. Med 47-48, 76–89 (2016).

    Article 
    CAS 

    Google Scholar 

  • Belenichev, I. et al. Modulating Nitric Oxide: Implications for Cytotoxicity and Cytoprotection. Antioxidants. 13, 504 (2024).

  • Drapier, J. C. et al. Biosynthesis of nitric oxide activates iron regulatory factor in macrophages. EMBO J. 12, 3643–3649 (1993).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ohhashi, T. et al. Physiological Roles of Lymph Flow-Mediated Nitric Oxide in Lymphatic System. Lymphat Res. Biol. 21, 253–261 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Zhao, Y., Vanhoutte, P. M. & Leung, S. W. Vascular nitric oxide: Beyond eNOS. J. Pharm. Sci. 129, 83–94 (2015).

    Article 
    CAS 

    Google Scholar 

  • Lepoivre, M. et al. Inactivation of ribonucleotide reductase by nitric oxide. Biochem. Biophys. Res Commun. 179, 442–448 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hagendoorn, J., Padera, T. P., Fukumura, D. & Jain, R. K. Molecular regulation of microlymphatic formation and function: role of nitric oxide. Trends Cardiovasc. Med. 15, 169–173 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Isbell, T. S., Gladwin, M. T. & Patel, R. P. Hemoglobin oxygen fractional saturation regulates nitrite-dependent vasodilation of aortic ring bioassays. Am. J. Physiol. Heart Circ. Physiol. 293, H2565–H2572 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cosby, K. et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat. Med. 9, 1498–1505 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Helms, C. & Kim-Shapiro, D. B. Hemoglobin-mediated nitric oxide signaling. Free Radic. Biol. Med. 61, 464–472 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Crawford, J. H. et al. Hypoxia, red blood cells, and nitrite regulate NO-dependent hypoxic vasodilation. Blood 107, 566–574 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murad, F. Discovery of some of the biological effects of nitric oxide and its role in cell signaling. Biosci. Rep. 24, 452–474 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Bohlen, H. G. et al. Phasic contractions of rat mesenteric lymphatics increase basal and phasic nitric oxide generation in vivo. Am. J. Physiol. Heart Circ. Physiol. 297, H1319–H1328 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Imai, T. et al. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 91, 521–530 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Landsman, L. et al. CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival. Blood 113, 963–972 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Harrison, J. K. et al. Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc. Natl Acad. Sci. USA 95, 10896–10901 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lucas, A. D. et al. The transmembrane form of the CX3CL1 chemokine fractalkine is expressed predominantly by epithelial cells in vivo. Am. J. Pathol. 158, 855–866 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Greaves, D. R. et al. Linked Chromosome 16q13 Chemokines, Macrophage-Derived Chemokine, Fractalkine, and Thymus- and Activation-Regulated Chemokine, Are Expressed in Human Atherosclerotic Lesions. Arteriosclerosis Thrombosis Vasc. Biol. 21, 923–929 (2001).

    Article 
    CAS 

    Google Scholar 

  • Bazan, J. F. et al. A new class of membrane-bound chemokine with a CX3C motif. Nature 385, 640–644 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ahn, S. Y. et al. Tumor necrosis factor-alpha induces fractalkine expression preferentially in arterial endothelial cells and mithramycin A suppresses TNF-alpha-induced fractalkine expression. Am. J. Pathol. 164, 1663–1672 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wong, B. W., Wong, D. & McManus, B. M. Characterization of fractalkine (CX3CL1) and CX3CR1 in human coronary arteries with native atherosclerosis, diabetes mellitus, and transplant vascular disease. Cardiovasc. Pathol. 11, 332–338 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lucas, A. D. et al. Smooth muscle cells in human atherosclerotic plaques express the fractalkine receptor CX3CR1 and undergo chemotaxis to the CX3C chemokine fractalkine (CX3CL1). Circulation 108, 2498–2504 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, X. P. et al. Fractalkine upregulates intercellular adhesion molecule-1 in endothelial cells through CX3CR1 and the Jak Stat5 pathway. Circ. Res. 101, 1001–1008 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Qian, S. et al. “Find-eat” strategy targeting endothelial cells via receptor functionalized apoptotic body nanovesicle. Sci. Bull. 68, 826–837 (2023).

    Article 
    CAS 

    Google Scholar 

  • Takeda, A. et al. Single-Cell Survey of Human Lymphatics Unveils Marked Endothelial Cell Heterogeneity and Mechanisms of Homing for Neutrophils. Immunity 51, e565 (2019).

    Article 

    Google Scholar 

  • Fujimoto, N. & Dieterich, L. C. Mechanisms and Clinical Significance of Tumor Lymphatic Invasion. Cells. 10, 2585 (2021).

  • Jalkanen, S. & Salmi, M. Lymphatic endothelial cells of the lymph node. Nat. Rev. Immunol. 20, 566–578 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Petrova, T. V. & Koh, G. Y. Biological functions of lymphatic vessels. Science. 369, eaax4063 (2020).

  • das Neves, S. P. et al. Meningeal lymphatic function promotes oligodendrocyte survival and brain myelination. Immunity 57, e2328 (2024).

    Article 

    Google Scholar 

  • Butler, M. G., Dagenais, S. L., Rockson, S. G. & Glover, T. W. A novel VEGFR3 mutation causes Milroy disease. Am. J. Med. Genet. A 143A, 1212–1217 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Butler, M. G., Isogai, S. & Weinstein, B. M. Lymphatic development. Birth Defects Res. C. Embryo Today 87, 222–231 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferrell, R. E. et al. Hereditary lymphedema: evidence for linkage and genetic heterogeneity. Hum. Mol. Genet. 7, 2073–2078 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Irrthum, A. et al. Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR3 tyrosine kinase. Am. J. Hum. Genet. 67, 295–301 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Falls, H. F. & Kertesz, E. D. A New Syndrome Combining Pterygium Colli with Developmental Anomalies of the Eyelids and Lymphatics of the Lower Extremities. Trans. Am. Ophthalmol. Soc. 62, 248–275 (1964).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fang, J. et al. Mutations in FOXC2 (MFH-1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome. Am. J. Hum. Genet. 67, 1382–1388 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Finegold, D. N. et al. Truncating mutations in FOXC2 cause multiple lymphedema syndromes. Hum. Mol. Genet. 10, 1185–1189 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ghalamkarpour, A. et al. Sporadic in utero generalized edema caused by mutations in the lymphangiogenic genes VEGFR3 and FOXC2. J. Pediatr. 155, 90–93 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Petrova, T. V. et al. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat. Med. 10, 974–981 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • van Steensel, M. A. et al. Novel missense mutations in the FOXC2 gene alter transcriptional activity. Hum. Mutat. 30, E1002–E1009 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Jha, S. K. et al. Efficient activation of the lymphangiogenic growth factor VEGF-C requires the C-terminal domain of VEGF-C and the N-terminal domain of CCBE1. Sci. Rep. 7, 4916 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alders, M. et al. Evaluation of Clinical Manifestations in Patients with Severe Lymphedema with and without CCBE1 Mutations. Mol. Syndromol. 4, 107–113 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Connell, F. et al. Linkage and sequence analysis indicate that CCBE1 is mutated in recessively inherited generalised lymphatic dysplasia. Hum. Genet. 127, 231–241 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Alders, M. et al. Mutations in CCBE1 cause generalized lymph vessel dysplasia in humans. Nat. Genet. 41, 1272–1274 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Van Balkom, I. D. et al. Lymphedema-lymphangiectasia-mental retardation (Hennekam) syndrome: a review. Am. J. Med. Genet. 112, 412–421 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Hennekam, R. C. et al. Autosomal recessive intestinal lymphangiectasia and lymphedema, with facial anomalies and mental retardation. Am. J. Med. Genet. 34, 593–600 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Geng, X. et al. Multiple mouse models of primary lymphedema exhibit distinct defects in lymphovenous valve development. Dev. Biol. 409, 218–233 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hahn, C. N. et al. Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat. Genet. 43, 1012–1017 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kazenwadel, J. et al. Loss-of-function germline GATA2 mutations in patients with MDS/AML or MonoMAC syndrome and primary lymphedema reveal a key role for GATA2 in the lymphatic vasculature. Blood 119, 1283–1291 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ostergaard, P. et al. Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome). Nat. Genet. 43, 929–931 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fotiou, E. et al. Novel mutations in PIEZO1 cause an autosomal recessive generalized lymphatic dysplasia with non-immune hydrops fetalis. Nat. Commun. 6, 8085 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Francois, M. et al. Sox18 induces development of the lymphatic vasculature in mice. Nature 456, 643–647 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Irrthum, A. et al. Mutations in the transcription factor gene SOX18 underlie recessive and dominant forms of hypotrichosis-lymphedema-telangiectasia. Am. J. Hum. Genet. 72, 1470–1478 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pennisi, D. et al. Mutations in Sox18 underlie cardiovascular and hair follicle defects in ragged mice. Nat. Genet. 24, 434–437 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Alders, M. et al. Hennekam syndrome can be caused by FAT4 mutations and be allelic to Van Maldergem syndrome. Hum. Genet. 133, 1161–1167 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Betterman, K. L. et al. Atypical cadherin FAT4 orchestrates lymphatic endothelial cell polarity in response to flow. J. Clin. Invest 130, 3315–3328 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pujol, F. et al. Dachsous1-Fat4 Signaling Controls Endothelial Cell Polarization During Lymphatic Valve Morphogenesis-Brief Report. Arterioscler Thromb. Vasc. Biol. 37, 1732–1735 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brouillard, P. et al. Loss of ADAMTS3 activity causes Hennekam lymphangiectasia-lymphedema syndrome 3. Hum. Mol. Genet. 26, 4095–4104 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boone, P. M. et al. Biallelic mutation of FBXL7 suggests a novel form of Hennekam syndrome. Am. J. Med. Genet. A 182, 189–194 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lyons, O. et al. Human venous valve disease caused by mutations in FOXC2 and GJC2. J. Exp. Med. 214, 2437–2452 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ostergaard, P. et al. Rapid identification of mutations in GJC2 in primary lymphoedema using whole exome sequencing combined with linkage analysis with delineation of the phenotype. J. Med Genet. 48, 251–255 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ferrell, R. E. et al. GJC2 missense mutations cause human lymphedema. Am. J. Hum. Genet. 86, 943–948 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Au, A. C. et al. Protein tyrosine phosphatase PTPN14 is a regulator of lymphatic function and choanal development in humans. Am. J. Hum. Genet. 87, 436–444 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ostergaard, P. et al. Mutations in KIF11 cause autosomal-dominant microcephaly variably associated with congenital lymphedema and chorioretinopathy. Am. J. Hum. Genet. 90, 356–362 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bazigou, E. et al. Integrin-alpha9 is required for fibronectin matrix assembly during lymphatic valve morphogenesis. Dev. Cell 17, 175–186 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, X. Z. et al. Fatal bilateral chylothorax in mice lacking the integrin alpha9beta1. Mol. Cell Biol. 20, 5208–5215 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, G. C. et al. A recurrent ITGA9 missense mutation in human fetuses with severe chylothorax: possible correlation with poor response to fetal therapy. Prenat. Diagn. 28, 1057–1063 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hong, S. E. et al. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat. Genet. 26, 93–96 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lutter, S., Xie, S., Tatin, F. & Makinen, T. Smooth muscle-endothelial cell communication activates Reelin signaling and regulates lymphatic vessel formation. J. Cell Biol. 197, 837–849 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martin-Almedina, S. et al. EPHB4 kinase-inactivating mutations cause autosomal dominant lymphatic-related hydrops fetalis. J. Clin. Invest 126, 3080–3088 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo, X. et al. Emerging Roles of Meningeal Lymphatic Vessels in Alzheimer’s Disease. J. Alzheimers Dis. 94, S355–S366 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, G. et al. The meningeal lymphatic vessels and the glymphatic system: Potential therapeutic targets in neurological disorders. J. Cereb. Blood Flow. Metab. 42, 1364–1382 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y. & Oliver, G. Current views on the function of the lymphatic vasculature in health and disease. Genes Dev. 24, 2115–2126 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Semyachkina-Glushkovskaya, O. et al. Application of optical coherence tomography for in vivo monitoring of the meningeal lymphatic vessels during opening of blood-brain barrier: mechanisms of brain clearing. J. Biomed. Opt. 22, 1–9 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Iliff, J. J. et al. Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J. Neurosci. 33, 18190–18199 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Holstein-Ronsbo, S. et al. Glymphatic influx and clearance are accelerated by neurovascular coupling. Nat. Neurosci. 26, 1042–1053 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kilic, K. & Devor, A. The stop and go of glymphatic flow. Nat. Neurosci. 26, 924–925 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xiong, Y. et al. Advances in the study of the glymphatic system and aging. CNS Neurosci. Ther. 30, e14803 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, W. et al. Modulation of lymphatic transport in the central nervous system. Theranostics 12, 1117–1131 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pla, V. et al. A real-time in vivo clearance assay for quantification of glymphatic efflux. Cell Rep. 40, 111320 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rego, S., Sanchez, G. & Da Mesquita, S. Current views on meningeal lymphatics and immunity in aging and Alzheimer’s disease. Mol. Neurodegener. 18, 55 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salvador, A. F. M., Abduljawad, N. & Kipnis, J. Meningeal Lymphatics in Central Nervous System Diseases. Annu Rev. Neurosci. 47, 323–344 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yamada, K. & Iwatsubo, T. Involvement of the glymphatic/meningeal lymphatic system in Alzheimer’s disease: insights into proteostasis and future directions. Cell Mol. Life Sci. 81, 192 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, J. et al. The lymphatic drainage system of the CNS plays a role in lymphatic drainage, immunity, and neuroinflammation in stroke. J. Leukoc. Biol. 110, 283–291 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hladky, S. B. & Barrand, M. A. The glymphatic hypothesis: the theory and the evidence. Fluids Barriers CNS 19, 9 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yankova, G., Bogomyakova, O. & Tulupov, A. The glymphatic system and meningeal lymphatics of the brain: new understanding of brain clearance. Rev. Neurosci. 32, 693–705 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, J. et al. The Interplay between Meningeal Lymphatic Vessels and Neuroinflammation in Neurodegenerative Diseases. Curr. Neuropharmacol. 22, 1016–1032 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abbaoui, A., Fatoba, O. & Yamashita, T. Meningeal T cells function in the central nervous system homeostasis and neurodegenerative diseases. Front Cell Neurosci. 17, 1181071 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, T., Wang, F., Xu, S. & Huang, J. H. Meningeal immunity: Structure, function and a potential therapeutic target of neurodegenerative diseases. Brain Behav. Immun. 93, 264–276 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang-Xie, L. F., Drieu, A. & Kipnis, J. Waste clearance shapes aging brain health. Neuron, 113, 71–81 (2025).

  • Proulx, S. T. & Engelhardt, B. Macrophages clear the way for CNS fluid flow. Lancet Neurol. 22, 194–195 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Bordon, Y. Macrophages bordering the brain parenchyma regulate the flow of cerebrospinal fluid. Nat. Rev. Immunol. 23, 3 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Da Mesquita, S. & Rua, R. Brain border-associated macrophages: common denominators in infection, aging, and Alzheimer’s disease? Trends Immunol. 45, 346–357 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Van Hove, H. et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci. 22, 1021–1035 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Drieu, A. et al. Parenchymal border macrophages regulate tau pathology and tau-mediated neurodegeneration. Life Sci Alliance. 6, (2023).

  • Corder, E. H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261, 921–923 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Genin, E. et al. APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Mol. Psychiatry 16, 903–907 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Theendakara, V., Peters-Libeu, C. A., Bredesen, D. E. & Rao, R. V. Transcriptional Effects of ApoE4: Relevance to Alzheimer’s Disease. Mol. Neurobiol. 55, 5243–5254 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Montagne, A. et al. APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline. Nature 581, 71–76 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blanchard, J. W. et al. Reconstruction of the human blood-brain barrier in vitro reveals a pathogenic mechanism of APOE4 in pericytes. Nat. Med. 26, 952–963 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Achariyar, T. M. et al. Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation. Mol. Neurodegener. 11, 74 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, Q. et al. Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus. J. Neurosci. 26, 4985–4994 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mentis, A. A., Dardiotis, E. & Chrousos, G. P. Apolipoprotein E4 and meningeal lymphatics in Alzheimer disease: a conceptual framework. Mol. Psychiatry 26, 1075–1097 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, Z., Schwulst, S. J. & Mentis, A. A. APOE4-mediated Alzheimer disease and “Vascular”-“Meningeal Lymphatic” components: towards a novel therapeutic era? Mol. Psychiatry 26, 5472–5474 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Konialis, C. et al. The APOE E4 Allele Confers Increased Risk of Ischemic Stroke Among Greek Carriers. Adv. Clin. Exp. Med. 25, 471–478 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Zhou, Y. et al. Impaired Meningeal Lymphatics and Glymphatic Pathway in Patients with White Matter Hyperintensity. Adv. Sci. 11, e2402059 (2024).

    Article 

    Google Scholar 

  • Huang, Z., Hamblin, M. R. & Zhang, Q. Photobiomodulation in experimental models of Alzheimer’s disease: state-of-the-art and translational perspectives. Alzheimers Res. Ther. 16, 114 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, L. et al. Non-invasive photobiomodulation treatment in an Alzheimer Disease-like transgenic rat model. Theranostics 12, 2205–2231 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shan, X. et al. A Long-Acting Lyotropic Liquid Crystalline Implant Promotes the Drainage of Macromolecules by Brain-Related Lymphatic System in Treating Aged Alzheimer’s Disease. ACS Nano 18, 9688–9703 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Semyachkina-Glushkovskaya, O. et al. Night Photostimulation of Clearance of Beta-Amyloid from Mouse Brain: New Strategies in Preventing Alzheimer’s Disease. Cells. 10, 3289 (2021).

  • Wang, H. C. et al. BV2 Membrane-Coated PEGylated-Liposomes Delivered hFGF21 to Cortical and Hippocampal Microglia for Alzheimer’s Disease Therapy. Adv. Health. Mater. 13, e2400125 (2024).

    Article 

    Google Scholar 

  • Poewe, W. et al. Parkinson disease. Nat. Rev. Dis. Prim. 3, 17013 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Armstrong, M. J. & Okun, M. S. Diagnosis and Treatment of Parkinson Disease. JAMA 323, 548–560 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Dorsey, E. R. et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68, 384–386 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kalia, L. V. & Lang, A. E. Parkinson’s disease. Lancet 386, 896–912 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Charvin, D., Medori, R., Hauser, R. A. & Rascol, O. Therapeutic strategies for Parkinson disease: beyond dopaminergic drugs. Nat. Rev. Drug Discov. 17, 804–822 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Margolesky, J. & Singer, C. Extended-release oral capsule of carbidopa-levodopa in Parkinson disease. Ther. Adv. Neurol. Disord. 11, 1756285617737728 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Montastruc, J. L., Rascol, O. & Senard, J. M. Glutamate antagonists and Parkinson’s disease: a review of clinical data. Neurosci. Biobehav Rev. 21, 477–480 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sharma, G. et al. Advances in nanocarriers enabled brain targeted drug delivery across blood brain barrier. Int. J. Pharm. 559, 360–372 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, G. et al. Thin platelet-like COF nanocomposites for blood brain barrier transport and inhibition of brain metastasis from renal cancer. J. Mater. Chem. B 8, 4475–4488 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mantri, S. et al. Patterns of Dementia Treatment and Frank Prescribing Errors in Older Adults With Parkinson Disease. JAMA Neurol. 76, 41–49 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Wang, J. T. et al. Enhanced Delivery of Neuroactive Drugs via Nasal Delivery with a Self-Healing Supramolecular Gel. Adv. Sci. 8, e2101058 (2021).

    Article 

    Google Scholar 

  • de Oliveira Junior, E. R. et al. Nasal administration of nanoencapsulated geraniol/ursodeoxycholic acid conjugate: Towards a new approach for the management of Parkinson’s disease. J. Control Rel. 321, 540–552 (2020).

    Article 

    Google Scholar 

  • Ozsoy, Y., Gungor, S. & Cevher, E. Nasal delivery of high molecular weight drugs. Molecules 14, 3754–3779 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, J. et al. Delivery of Biomimetic Liposomes via Meningeal Lymphatic Vessels Route for Targeted Therapy of Parkinson’s Disease. Research 6, 0030 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, Z. et al. Traumatic brain injury in elderly population: A global systematic review and meta-analysis of in-hospital mortality and risk factors among 2.22 million individuals. Ageing Res. Rev. 99, 102376 (2024).

    Article 
    PubMed 

    Google Scholar 

  • van Hameren, G. et al. From spreading depolarization to blood-brain barrier dysfunction: navigating traumatic brain injury for novel diagnosis and therapy. Nat. Rev. Neurol. 20, 408–425 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Cash, A. & Theus, M. H. Mechanisms of Blood-Brain Barrier Dysfunction in Traumatic Brain Injury. Int. J. Mol. Sci. 21, 3344 (2020).

  • Overgaard Wichmann, T., Hedegaard Hojsager, M. & Hasager Damkier, H. Water channels in the brain and spinal cord-overview of the role of aquaporins in traumatic brain injury and traumatic spinal cord injury. Front. Cell Neurosci. 18, 1414662 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shang, P. et al. New Insights on Mechanisms and Therapeutic Targets of Cerebral Edema. Curr. Neuropharmacol. 22, 2330–2352 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lempriere, S. Meningeal lymphatic flow slows after mild traumatic brain injury. Nat. Rev. Neurol. 16, 600 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Puy, L. et al. Intracerebral haemorrhage. Nat. Rev. Dis. Prim. 9, 14 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Collaborators, G. B. D. S. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 20, 795–820 (2021).

    Article 

    Google Scholar 

  • Poon, M. T., Fonville, A. F. & Al-Shahi Salman, R. Long-term prognosis after intracerebral haemorrhage: systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 85, 660–667 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Moulin, S. et al. Dementia risk after spontaneous intracerebral haemorrhage: a prospective cohort study. Lancet Neurol. 15, 820–829 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Li, L. et al. Risks of recurrent stroke and all serious vascular events after spontaneous intracerebral haemorrhage: pooled analyses of two population-based studies. Lancet Neurol. 20, 437–447 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, X. et al. Iron/ROS/Itga3 mediated accelerated depletion of hippocampal neural stem cell pool contributes to cognitive impairment after hemorrhagic stroke. Redox Biol. 71, 103086 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shah, V. A. et al. One-Year Outcome Trajectories and Factors Associated with Functional Recovery Among Survivors of Intracerebral and Intraventricular Hemorrhage With Initial Severe Disability. JAMA Neurol. 79, 856–868 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Z. et al. NLRP3-dependent lipid droplet formation contributes to posthemorrhagic hydrocephalus by increasing the permeability of the blood-cerebrospinal fluid barrier in the choroid plexus. Exp. Mol. Med. 55, 574–586 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Z. et al. NLRP3 inflammasome-mediated choroid plexus hypersecretion contributes to hydrocephalus after intraventricular hemorrhage via phosphorylated NKCC1 channels. J. Neuroinflammation 19, 163 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, Q. et al. Post-hemorrhagic hydrocephalus: Recent advances and new therapeutic insights. J. Neurol. Sci. 375, 220–230 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Ho, Y. J. et al. Effectiveness and safety of ventriculoperitoneal shunt versus lumboperitoneal shunt for communicating hydrocephalus: A systematic review and meta-analysis with trial sequential analysis. CNS Neurosci. Ther. 29, 804–815 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hanley, D. F. et al. Thrombolytic removal of intraventricular haemorrhage in treatment of severe stroke: results of the randomised, multicentre, multiregion, placebo-controlled CLEAR III trial. Lancet 389, 603–611 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maller, V. V. & Gray, R. I. Noncommunicating Hydrocephalus. Semin Ultrasound CT MR 37, 109–119 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Green, L. M., Wallis, T., Schuhmann, M. U. & Jaeger, M. Intracranial pressure waveform characteristics in idiopathic normal pressure hydrocephalus and late-onset idiopathic aqueductal stenosis. Fluids Barriers CNS 18, 25 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kuo, L. T. & Huang, A. P. The Pathogenesis of Hydrocephalus Following Aneurysmal Subarachnoid Hemorrhage. Int. J. Mol. Sci. 22, 5050 (2021).

  • Liao, F. et al. LSKL peptide alleviates subarachnoid fibrosis and hydrocephalus by inhibiting TSP1-mediated TGF-beta1 signaling activity following subarachnoid hemorrhage in rats. Exp. Ther. Med. 12, 2537–2543 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wahood, W. et al. Trends in Admissions and Outcomes for Treatment of Aneurysmal Subarachnoid Hemorrhage in the United States. Neurocrit Care 37, 209–218 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Chen, Y. et al. Rethinking the initial changes in subarachnoid haemorrhage: Focusing on real-time metabolism during early brain injury. EBioMedicine 83, 104223 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Duan, M. et al. Endothelial EGLN3-PKM2 signaling induces the formation of acute astrocytic barrier to alleviate immune cell infiltration after subarachnoid hemorrhage. Fluids Barriers CNS 21, 42 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, B. L. et al. Blocking cerebral lymphatic drainage deteriorates cerebral oxidative injury in rats with subarachnoid hemorrhage. Acta Neurochir. Suppl. 110, 49–53 (2011).

    PubMed 

    Google Scholar 

  • Wang, Y. J. et al. The lymphatic drainage systems in the brain: a novel target for ischemic stroke? Neural Regen. Res. 18, 485–491 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Perla, M., Caretti, V., Moro, M. A. & McCullough, L. D. Role of the Meningeal Lymphatics in Stroke. Stroke 54, 1670–1673 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lv, T., Zhao, B., Hu, Q. & Zhang, X. The Glymphatic System: A Novel Therapeutic Target for Stroke Treatment. Front. Aging Neurosci. 13, 689098 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koh, G. Y. & McDonald, D. M. Meningeal lymphatics can influence stroke outcome. J. Exp. Med. 221, (2024).

  • Ma, Q. et al. Lymphatic outflow of cerebrospinal fluid is reduced in glioma. Sci. Rep. 9, 14815 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hsu, S. J. et al. Enhanced Meningeal Lymphatic Drainage Ameliorates Neuroinflammation and Hepatic Encephalopathy in Cirrhotic Rats. Gastroenterology 160, e1313 (2021).

    Article 

    Google Scholar 

  • MacDonald, M. E. et al. Lymphatic coagulation and neutrophil extracellular traps in lung-draining lymph nodes of COVID-19 decedents. Blood Adv. 6, 6249–6262 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, W. et al. Coagulation in Lymphatic System. Front. Cardiovasc. Med. 8, 762648 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tambe, R. et al. Antiepileptogenic effects of borneol in pentylenetetrazole-induced kindling in mice. Naunyn Schmiedebergs Arch. Pharm. 389, 467–475 (2016).

    Article 
    CAS 

    Google Scholar 

  • Li, W. R. et al. Pharmacokinetics of natural borneol after oral administration in mice brain and its effect on excitation ratio. Eur. J. Drug Metab. Pharmacokinet. 37, 39–44 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Yu, B. et al. Effects of borneol on the pharmacokinetics of geniposide in cortex, hippocampus, hypothalamus and striatum of conscious rat by simultaneous brain microdialysis coupled with UPLC-MS. J. Pharm. Biomed. Anal. 77, 128–132 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Matrongolo, M. J. et al. Piezo1 agonist restores meningeal lymphatic vessels, drainage, and brain-CSF perfusion in craniosynostosis and aged mice. J Clin Invest. 134, e171468 (2023).

  • Li, J. et al. Yuanzhi powder facilitated Abeta clearance in APP/PS1 mice: Target to the drainage of glymphatic system and meningeal lymphatic vessels. J. Ethnopharmacol. 319, 117195 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bec, K. B., Grabska, J. & Huck, C. W. Near-Infrared Spectroscopy in Bio-Applications. Molecules. 25, 2948 (2020).

  • Tao, L. et al. Microglia modulation with 1070-nm light attenuates Abeta burden and cognitive impairment in Alzheimer’s disease mouse model. Light Sci. Appl 10, 179 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baxter, G. D. et al. Low level laser therapy (Photobiomodulation therapy) for breast cancer-related lymphedema: a systematic review. BMC Cancer 17, 833 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, D. et al. Photostimulation of lymphatic clearance of beta-amyloid from mouse brain: a new strategy for the therapy of Alzheimer’s disease. Front. Optoelectron 16, 45 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, S. et al. Transcranial photobiomodulation improves insulin therapy in diabetic microglial reactivity and the brain drainage system. Commun. Biol. 6, 1239 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oxana, S. G. et al. Mechanisms of phototherapy of Alzheimer’s disease during sleep and wakefulness: the role of the meningeal lymphatics. Front. Optoelectron 16, 22 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Y. et al. rTMS treatment for abrogating intracerebral hemorrhage-induced brain parenchymal metabolite clearance dysfunction in male mice by regulating intracranial lymphatic drainage. Brain Behav. 13, e3062 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sachdeva, S. et al. Effects of Sound Interventions on the Permeability of the Blood-Brain Barrier and Meningeal Lymphatic Clearance. Brain Sci. 12, 742 (2022).

  • Murdock, M. H. et al. Multisensory gamma stimulation promotes glymphatic clearance of amyloid. Nature 627, 149–156 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hauglund, N. L., Kusk, P., Kornum, B. R. & Nedergaard, M. Meningeal Lymphangiogenesis and Enhanced Glymphatic Activity in Mice with Chronically Implanted EEG Electrodes. J. Neurosci. 40, 2371–2380 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ozturk, B. et al. Continuous positive airway pressure increases CSF flow and glymphatic transport. JCI Insight. 8, e170270 (2023).

  • Gao, C. et al. Craniocervical Manual Lymphatic Drainage Increases the Efficiency of Atorvastatin-Based Treatment of Chronic Subdural Hematoma. Transl. Stroke Res. 14, 667–677 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Castellani, G., Croese, T., Peralta Ramos, J. M. & Schwartz, M. Transforming the understanding of brain immunity. Science 380, eabo7649 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rustenhoven, J. & Kipnis, J. Brain borders at the central stage of neuroimmunology. Nature 612, 417–429 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • link

    Exit mobile version