Explainable AI decision support improves accuracy during telehealth strep throat screening

Explainable AI decision support improves accuracy during telehealth strep throat screening

  • Pacis, D. M. M., Subido Jr, E. D. & Bugtai, N. T. Trends in telemedicine utilizing artificial intelligence. In International Symposium of Biomedical Engineering, Vol. 1933, 040009 (AIP Publishing LLC, 2018).

  • Kuziemsky, C. et al. Role of artificial intelligence within the telehealth domain. Yearb. Med. Inform. 28, 035–040 (2019).

    Article 

    Google Scholar 

  • Webster, P. Virtual health care in the era of covid-19. Lancet 395, 1180–1181 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tschandl, P. et al. Human–computer collaboration for skin cancer recognition. Nat. Med. 26, 1229–1234 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ghunaim, H., Weekes, T. R. & Eskridge, T. C. Designing an AI assistant for student telehealth: a case study using human-centered design. In International Conference on Human–Machine Systems (ICHMS), 1–6 (IEEE, 2022).

  • Soberanis-Mukul, R. et al. A novel method to identify streptococcus pharyngitis using smart-phone images and artificial intelligence. In American Academy of Pediatrics National Conference (2022).

  • Haggenmüller, V. et al. Smartphone-based point-of-care anemia screening in rural Bihar in India. Commun. Med. 3, 38 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lebovitz, S., Lifshitz-Assaf, H. & Levina, N. To engage or not to engage with AI for critical judgments: how professionals deal with opacity when using AI for medical diagnosis. Organ. Sci. 33, 126–148 (2022).

    Article 

    Google Scholar 

  • Markus, A. F., Kors, J. A. & Rijnbeek, P. R. The role of explainability in creating trustworthy artificial intelligence for health care: a comprehensive survey of the terminology, design choices, and evaluation strategies. J. Biomed. Inform. 113, 103655 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Amann, J., Blasimme, A., Vayena, E., Frey, D. & Madai, V. I. Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Med. Inform. Decision Mak. 20, 1–9 (2020).

    Google Scholar 

  • Vellido, A. The importance of interpretability and visualization in machine learning for applications in medicine and health care. Neural Comput. Appl. 32, 18069–18083 (2020).

    Article 

    Google Scholar 

  • Sarkaria, S., Rebiffe, S., Gupta, U., Maliapen, M. & Whitehead, P. Image processing of streptococcal infection in pharyngitis subjects. US Patent No. 11,602,312 B2 (2022).

  • Canares, T. Machine learning systems and related aspects for the detection of disease states. US Patent No. 63,375,978 (2022).

  • Ebell, M. H., Smith, M. A., Barry, H. C., Ives, K. & Carey, M. Does this patient have strep throat? JAMA 284, 2912–2918 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fine, A. M., Nizet, V. & Mandl, K. D. Large-scale validation of the centor and McIsaac scores to predict group a streptococcal pharyngitis. Arch. Intern. Med. 172, 847–852 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Centor, R. M., Witherspoon, J. M., Dalton, H. P., Brody, C. E. & Link, K. The diagnosis of strep throat in adults in the emergency room. Med. Decision Mak. 1, 239–246 (1981).

    Article 
    CAS 

    Google Scholar 

  • Seeley, A. et al. Diagnostic accuracy of FEVER-PAIN and Centor criteria for bacterial throat infection in adults with sore throat: a secondary analysis of a randomised controlled trial. BJGP Open 5, no. 6 (2021).

  • Hjortdahl, P., Lærum, E. & Mowinckel, P. Clinical assessment of pharyngitis in general practice. Scand. J. Prim. Health Care 6, 219–223 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mohseni, S., Zarei, N. & Ragan, E. D. A multidisciplinary survey and framework for design and evaluation of explainable AI systems. ACM Trans. Interact. Intell. Syst. 11, 1–45 (2021).

    Article 

    Google Scholar 

  • Tonekaboni, S., Joshi, S., McCradden, M. D. & Goldenberg, A. What clinicians want: contextualizing explainable machine learning for clinical end use. In Machine Learning for Healthcare Conference 359–380 (Proceedings of Machine Learning Research, 2019).

  • Xie, Y., Chen, M., Kao, D., Gao, G. & Chen, X. Chexplain: enabling physicians to explore and understand data-driven, ai-enabled medical imaging analysis. In Proc. 2020 CHI Conference on Human Factors in Computing Systems 1–13 (Association for Computing Machinery, 2020).

  • Jacobs, M. et al. Designing AI for trust and collaboration in time-constrained medical decisions: a sociotechnical lens. In Proc. 2021 CHI Conference on Human Factors in Computing Systems 1–14 (Association for Computing Machinery, 2021).

  • Cai, C. J. et al. Human-centered tools for coping with imperfect algorithms during medical decision-making. In Proc. 2019 CHI Conference on Human Factors in Computing Systems 1–14 (Association for Computing Machinery, 2019).

  • Thieme, A. et al. Designing human-centered AI for mental health: Developing clinically relevant applications for online CBT treatment. ACM Trans. Comput.–Hum. Interact. 30, 1–50 (2022).

    Article 

    Google Scholar 

  • Reyes, M. et al. On the interpretability of artificial intelligence in radiology: challenges and opportunities. Radiology: Artif. Intell. 2, e190043 (2020).

    Google Scholar 

  • Tjoa, E. & Guan, C. A survey on explainable artificial intelligence (XAI): toward medical XAI. IEEE Trans. Neural Netw. Learn. Syst. 32, 4793–4813 (2020).

    Article 

    Google Scholar 

  • Van der Velden, B. H., Kuijf, H. J., Gilhuijs, K. G. & Viergever, M. A. Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Med. Image Anal. 79, 102470 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Antoniadi, A. M. et al. Current challenges and future opportunities for XAI in machine learning-based clinical decision support systems: a systematic review. Appl. Sci. 11, 5088 (2021).

    Article 
    CAS 

    Google Scholar 

  • Nazar, M., Alam, M. M., Yafi, E. & Su’ud, M. M. A systematic review of human–computer interaction and explainable artificial intelligence in healthcare with artificial intelligence techniques. IEEE Access 9, 153316–153348 (2021).

    Article 

    Google Scholar 

  • Chen, H., Gomez, C., Huang, C.-M. & Unberath, M. Explainable medical imaging ai needs human-centered design: guidelines and evidence from a systematic review. npj Digit. Med. 5, 1–15 (2022).

    Article 

    Google Scholar 

  • Schoonderwoerd, T. A., Jorritsma, W., Neerincx, M. A. & Van Den Bosch, K. Human-centered XAI: developing design patterns for explanations of clinical decision support systems. Int. J. Hum.–Comput. Stud. 154, 102684 (2021).

    Article 

    Google Scholar 

  • Calisto, F. M., Santiago, C., Nunes, N. & Nascimento, J. C. Breastscreening-AI: evaluating medical intelligent agents for human–AI interactions. Artif. Intell. Med. 127, 102285 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Gaube, S. et al. Non-task expert physicians benefit from correct explainable AI advice when reviewing x-rays. Sci. Rep. 13, 1383 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, D., Yang, Q., Abdul, A. & Lim, B. Y. Designing theory-driven user-centric explainable AI. In Proc. 2019 CHI Conference on Human Factors in Computing Systems 1–15 (Association for Computing Machinery, 2019).

  • Lee, M. H., Siewiorek, D. P., Smailagic, A., Bernardino, A. & Bermúdez i Badia, S. A human–AI collaborative approach for clinical decision making on rehabilitation assessment. In Proc. 2021 CHI Conference on Human Factors in Computing Systems 1–14 (Association for Computing Machinery, 2021).

  • Panigutti, C., Perotti, A. & Pedreschi, D. Doctor XAI: an ontology-based approach to black-box sequential data classification explanations. In Proc. 2020 Conference on Fairness, Accountability, and Transparency 629–639 (2020).

  • Jacobs, M. et al. How machine-learning recommendations influence clinician treatment selections: the example of antidepressant selection. Transl. Psychiatry 11, 108 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tsai, C.-H., You, Y., Gui, X., Kou, Y. & Carroll, J. M. Exploring and promoting diagnostic transparency and explainability in online symptom checkers. In Proc. 2021 CHI Conference on Human Factors in Computing Systems 1–17 (Association for Computing Machinery, 2021).

  • Du, Y., Antoniadi, A. M., McNestry, C., McAuliffe, F. M. & Mooney, C. The role of xai in advice-taking from a clinical decision support system: a comparative user study of feature contribution-based and example-based explanations. Appl. Sci. 12, 10323 (2022).

    Article 
    CAS 

    Google Scholar 

  • Suresh, H., Lewis, K. M., Guttag, J. & Satyanarayan, A. Intuitively assessing ML model reliability through example-based explanations and editing model inputs. In 27th International Conference on Intelligent User Interfaces 767–781 (Association for Computing Machinery, 2022).

  • Bhattacharya, A., Ooge, J., Stiglic, G. & Verbert, K. Directive explanations for monitoring the risk of diabetes onset: introducing directive data-centric explanations and combinations to support what-if explorations. In Proc. 28th International Conference on Intelligent User Interfaces 204–219 (Association for Computing Machinery, 2023).

  • Wang, R., Fu, G., Li, J. & Pei, Y. Diagnosis after zooming in: a multilabel classification model by imitating doctor reading habits to diagnose brain diseases. Med. Phys. 49, 7054–7070 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Jungmann, F. et al. Algorithmic transparency and interpretability measures improve radiologists’ performance in BI-RADS 4 classification. Eur. Radiol. 33, 1844–1851 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Naiseh, M., Al-Thani, D., Jiang, N. & Ali, R. How the different explanation classes impact trust calibration: the case of clinical decision support systems. Int. J. Hum.–Comput. Stud. 169, 102941 (2023).

    Article 

    Google Scholar 

  • Hwang, J., Lee, T., Lee, H. & Byun, S. A clinical decision support system for sleep staging tasks with explanations from artificial intelligence: user-centered design and evaluation study. J. Med. Internet Res. 24, e28659 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cabitza, F. et al. Painting the black box white: experimental findings from applying xai to an ECG reading setting. Mach. Learn. Knowl. Extr. 5, 269–286 (2023).

    Article 

    Google Scholar 

  • Hah, H. & Goldin, D. Moving toward ai-assisted decision-making: observation on clinicians’ management of multimedia patient information in synchronous and asynchronous telehealth contexts. Health Inform. J. 28, 14604582221077049 (2022).

    Article 

    Google Scholar 

  • Jiang, J., Kahai, S. & Yang, M. Who needs explanation and when? Juggling explainable AI and user epistemic uncertainty. Int. J. Hum.–Comput. Stud. 165, 102839 (2022).

    Article 

    Google Scholar 

  • Yang, Q., Steinfeld, A., Rosé, C. & Zimmerman, J. Re-examining whether, why, and how human–AI interaction is uniquely difficult to design. In Proc. 2020 CHI Conference on Human Factors in Computing Systems 1–13 (Association for Computing Machinery, 2020).

  • Panigutti, C., Beretta, A., Giannotti, F. & Pedreschi, D. Understanding the impact of explanations on advice-taking: a user study for ai-based clinical decision support systems. In CHI Conference on Human Factors in Computing Systems 1–9 (Association for Computing Machinery, 2022).

  • McIsaac, W. J., Kellner, J. D., Aufricht, P., Vanjaka, A. & Low, D. E. Empirical validation of guidelines for the management of pharyngitis in children and adults. JAMA 291, 1587–1595 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Scott, I., Carter, S. & Coiera, E. Clinician checklist for assessing suitability of machine learning applications in healthcare. BMJ Health & Care Informatics. 28, e100251 (2021).

  • Yin, M., Wortman Vaughan, J. & Wallach, H. Understanding the effect of accuracy on trust in machine learning models. In Proc. 2019 CHI Conference on Human Factors in Computing Systems 1–12 (Association for Computing Machinery, 2019).

  • Molnar, C. Interpretable Machine Learning (Lulu. com, 2020).

  • Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30, 4768–4777 (2017).

  • Cohen, J. F., Bertille, N., Cohen, R. & Chalumeau, M. Rapid antigen detection test for group a streptococcus in children with pharyngitis. Cochrane Database of Systematic Reviews (2016).

  • Harris, P. A. et al. Research electronic data capture (redcap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 42, 377–381 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Harris, P. A. et al. The redcap consortium: building an international community of software platform partners. J. Biomed. Inform. 95, 103208 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vodrahalli, K., Daneshjou, R., Gerstenberg, T. & Zou, J. Do humans trust advice more if it comes from AI? An analysis of human-ai interactions. In Proc. 2022 AAAI/ACM Conference on AI, Ethics, and Society 763–777 (Association for Computing Machinery, 2022).

  • Lundberg, S. M. et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat. Biomed. Eng. 2, 749–760 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dratsch, T. et al. Automation bias in mammography: the impact of artificial intelligence BI-RADS suggestions on reader performance. Radiology 307, e222176 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Bussone, A., Stumpf, S. & O’Sullivan, D. The role of explanations on trust and reliance in clinical decision support systems. In 2015 International Conference on Healthcare Informatics 160–169 (IEEE, 2015).

  • Levy, A., Agrawal, M., Satyanarayan, A. & Sontag, D. Assessing the impact of automated suggestions on decision making: domain experts mediate model errors but take less initiative. In Proc. 2021 CHI Conference on Human Factors in Computing Systems 1–13 (Association for Computing Machinery, 2021).

  • Gomez, C., Unberath, M. & Huang, C.-M. Mitigating knowledge imbalance in ai-advised decision-making through collaborative user involvement. Int. J. Hum.–Comput. Stud. 172, 102977 (2023).

    Article 

    Google Scholar 

  • Wang, X. & Yin, M. Are explanations helpful? A comparative study of the effects of explanations in AI-assisted decision-making. In 26th International Conference on Intelligent User Interfaces 318–328 (Association for Computing Machinery, 2021).

  • Adam, H., Balagopalan, A., Alsentzer, E., Christia, F. & Ghassemi, M. Mitigating the impact of biased artificial intelligence in emergency decision-making. Commun. Med. 2, 149 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y., Liao, Q. V. & Bellamy, R. K. Effect of confidence and explanation on accuracy and trust calibration in AI-assisted decision making. In Proc. 2020 Conference on Fairness, Accountability, and Transparency 295–305 (2020).

  • Cao, S. & Huang, C.-M. Understanding user reliance on AI in assisted decision-making. Proc. ACM Hum.–Comput. Interact. 6, 1–23 (2022).

    Article 
    CAS 

    Google Scholar 

  • Papenmeier, A., Kern, D., Englebienne, G. & Seifert, C. It’s complicated: the relationship between user trust, model accuracy and explanations in AI. ACM Trans. Comput.–Hum. Interact. 29, 1–33 (2022).

    Article 

    Google Scholar 

  • Bisno, A. L. Diagnosing strep throat in the adult patient: do clinical criteria really suffice? Ann. Intern. Med. 139, 150–151 (2003).

    Article 
    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *