Perivascular macrophages in the central nervous system: insights into their roles in health and disease

Perivascular macrophages in the central nervous system: insights into their roles in health and disease

  • Yang T, Guo R, Zhang F. Brain perivascular macrophages: Recent advances and implications in health and diseases. CNS Neurosci Ther. 2019;25:1318–28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen K, Wang H, Ilyas I, Mahmood A, Hou L. Microglia and astrocytes dysfunction and key neuroinflammation-based biomarkers in Parkinson’s disease. Brain Sci. 2023;13:634.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parmar M. Targets for astrocyte-based treatments of Parkinson’s disease (PD). Proc Natl Acad Sci USA. 2022;119:e2208876119.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carter SF, Herholz K, Rosa-Neto P, Pellerin L, Nordberg A, Zimmer ER. Astrocyte biomarkers in Alzheimer’s disease. Trends Mol Med. 2019;25:77–95.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ho MS. Microglia in Parkinson’s disease. Adv Exp Med Biol. 2019;1175:335–53.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer’s disease. J Cell Biol. 2018;217:459–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prinz M, Erny D, Hagemeyer N. Ontogeny and homeostasis of CNS myeloid cells. Nat Immunol. 2017;18:385–92.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zheng L, Guo Y, Zhai X, Zhang Y, Chen W, Zhu Z, et al. Perivascular macrophages in the CNS: From health to neurovascular diseases. CNS Neurosci Ther. 2022;28:1908–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Taylor X, Clark IM, Fitzgerald GJ, Oluoch H, Hole JT, DeMattos RB, et al. Amyloid-beta (Abeta) immunotherapy induced microhemorrhages are associated with activated perivascular macrophages and peripheral monocyte recruitment in Alzheimer’s disease mice. Mol Neurodegener. 2023;18:59.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schonhoff AM, Figge DA, Williams GP, Jurkuvenaite A, Gallups NJ, Childers GM, et al. Border-associated macrophages mediate the neuroinflammatory response in an alpha-synuclein model of Parkinson disease. Nat Commun. 2023;14:3754.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Siret C, van Lessen M, Bavais J, Jeong HW, Reddy Samawar SK, Kapupara K, et al. Deciphering the heterogeneity of the Lyve1(+) perivascular macrophages in the mouse brain. Nat Commun. 2022;13:7366.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Masuda T, Amann L, Monaco G, Sankowski R, Staszewski O, Krueger M, et al. Specification of CNS macrophage subsets occurs postnatally in defined niches. Nature. 2022;604:740–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Faraco G, Park L, Anrather J, Iadecola C. Brain perivascular macrophages: characterization and functional roles in health and disease. J Mol Med (Berl). 2017;95:1143–52.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu X, Saito T, Saido TC, Barron AM, Ruedl C. Microglia and CD206(+) border-associated mouse macrophages maintain their embryonic origin during Alzheimer’s disease. Elife. 2021;10:e71879.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Frosch M, Amann L, Prinz M. CNS-associated macrophages shape the inflammatory response in a mouse model of Parkinson’s disease. Nat Commun. 2023;14:3753.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sayd A, Vargas-Caraveo A, Perea-Romero I, Robledo-Montana J, Caso JR, Madrigal JLM, et al. Depletion of brain perivascular macrophages regulates acute restraint stress-induced neuroinflammation and oxidative/nitrosative stress in rat frontal cortex. Eur Neuropsychopharmacol. 2020;34:50–64.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mendes NF, Velloso LA. Perivascular macrophages in high-fat diet-induced hypothalamic inflammation. J Neuroinflamm. 2022;19:136.

    Article 
    CAS 

    Google Scholar 

  • Pedragosa J, Salas-Perdomo A, Gallizioli M, Cugota R, Miro-Mur F, Brianso F, et al. CNS-border associated macrophages respond to acute ischemic stroke attracting granulocytes and promoting vascular leakage. Acta Neuropathol Commun. 2018;6:76.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Faraco G, Sugiyama Y, Lane D, Garcia-Bonilla L, Chang H, Santisteban MM, et al. Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. J Clin Invest. 2016;126:4674–89.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ginhoux F, Guilliams M. Tissue-resident macrophage ontogeny and homeostasis. Immunity. 2016;44:439–49.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Prinz M, Masuda T, Wheeler MA, Quintana FJ. Microglia and central nervous system-associated macrophages-from origin to disease modulation. Annu Rev Immunol. 2021;39:251–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ivan DC, Walthert S, Berve K, Steudler J, Locatelli G. Dwellers and trespassers: mononuclear phagocytes at the borders of the central nervous system. Front Immunol. 2020;11:609921.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. 2015;518:547–51.

    Article 
    PubMed 

    Google Scholar 

  • Goldmann T, Wieghofer P, Jordao MJ, Prutek F, Hagemeyer N, Frenzel K, et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat Immunol. 2016;17:797–805.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dermitzakis I, Theotokis P, Evangelidis P, Delilampou E, Evangelidis N, Chatzisavvidou A, et al. CNS border-associated macrophages: ontogeny and potential implication in disease. Curr Issues Mol Biol. 2023;45:4285–300.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Masuda T, Amann L, Prinz M. Novel insights into the origin and development of CNS macrophage subsets. Clin Transl Med. 2022;12:e1096.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang Q, Zhao N, Kennard S, Lilly B. Notch2 and Notch3 function together to regulate vascular smooth muscle development. PLoS One. 2012;7:e37365.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330:841–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van Hove H, Martens L, Scheyltjens I, De Vlaminck K, Pombo Antunes AR, De Prijck S, et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat Neurosci. 2019;22:1021–35.

    Article 
    PubMed 

    Google Scholar 

  • Bechmann I, Kwidzinski E, Kovac AD, Simburger E, Horvath T, Gimsa U, et al. Turnover of rat brain perivascular cells. Exp Neurol. 2001;168:242–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dalmau Gasull A, Glavan M, Samawar SKR, Kapupara K, Kelk J, Rubio M, et al. The niche matters: origin, function and fate of CNS-associated macrophages during health and disease. Acta Neuropathol. 2024;147:37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Serrats J, Schiltz JC, Garcia-Bueno B, van Rooijen N, Reyes TM, Sawchenko PE. Dual roles for perivascular macrophages in immune-to-brain signaling. Neuron. 2010;65:94–106.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hickey WF, Kimura H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science. 1988;239:290–2.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Graeber MB, Streit WJ, Kreutzberg GW. Identity of ED2-positive perivascular cells in rat brain. J Neurosci Res. 1989;22:103–6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fabriek BO, Polfliet MM, Vloet RP, van der Schors RC, Ligtenberg AJ, Weaver LK, et al. The macrophage CD163 surface glycoprotein is an erythroblast adhesion receptor. Blood. 2007;109:5223–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim WK, Alvarez X, Fisher J, Bronfin B, Westmoreland S, McLaurin J, Williams K. CD163 identifies perivascular macrophages in normal and viral encephalitic brains and potential precursors to perivascular macrophages in blood. Am J Pathol. 2006;168:822–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Borda JT, Alvarez X, Mohan M, Hasegawa A, Bernardino A, Jean S, et al. CD163, a marker of perivascular macrophages, is up-regulated by microglia in simian immunodeficiency virus encephalitis after haptoglobin-hemoglobin complex stimulation and is suggestive of breakdown of the blood-brain barrier. Am J Pathol. 2008;172:725–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • You T, Tang H, Wu W, Gao J, Li X, Li N, et al. POSTN Secretion by Extracellular Matrix Cancer-Associated Fibroblasts (eCAFs) Correlates with Poor ICB Response via Macrophage Chemotaxis Activation of Akt Signaling Pathway in Gastric Cancer. Aging Dis. 2023;14:2177–92.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Galea I, Palin K, Newman TA, Van Rooijen N, Perry VH, Boche D. Mannose receptor expression specifically reveals perivascular macrophages in normal, injured, and diseased mouse brain. Glia. 2005;49:375–84.

    Article 
    PubMed 

    Google Scholar 

  • Chakarov S, Lim HY, Tan L, Lim SY, See P, Lum J, et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science. 2019;363:eaau0964.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Drieu A, Du S, Storck SE, Rustenhoven J, Papadopoulos Z, Dykstra T, et al. Parenchymal border macrophages regulate the flow dynamics of the cerebrospinal fluid. Nature. 2022;611:585–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim JS, Kolesnikov M, Peled-Hajaj S, Scheyltjens I, Xia Y, Trzebanski S, et al. A Binary Cre Transgenic Approach Dissects Microglia and CNS Border-Associated Macrophages. Immunity. 2021;54:176–90.e7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Karam M, Janbon H, Malkinson G, Brunet I. Heterogeneity and developmental dynamics of LYVE-1 perivascular macrophages distribution in the mouse brain. J Cereb Blood Flow Metab. 2022;42:1797–812.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arnold T, Betsholtz C. The importance of microglia in the development of the vasculature in the central nervous system. Vasc Cell. 2013;5:4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Utz SG, See P, Mildenberger W, Thion MS, Silvin A, Lutz M, et al. Early fate defines microglia and non-parenchymal brain macrophage development. Cell. 2020;181:557–73.e18.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Popovics P, Skalitzky KO, Schroeder E, Jain A, Silver SV, Van Fritz F, et al. Steroid hormone imbalance drives macrophage infiltration and Spp1/osteopontin(+) foam cell differentiation in the prostate. J Pathol. 2023;260:177–89.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Schepper S, Ge JZ, Crowley G, Ferreira LSS, Garceau D, Toomey CE, et al. Perivascular cells induce microglial phagocytic states and synaptic engulfment via SPP1 in mouse models of Alzheimer’s disease. Nat Neurosci. 2023;26:406–15.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lacolley P, Regnault V, Nicoletti A, Li Z, Michel JB. The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovasc Res. 2012;95:194–204.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang G, Jacquet L, Karamariti E, Xu Q. Origin and differentiation of vascular smooth muscle cells. J Physiol. 2015;593:3013–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kierdorf K, Masuda T, Jordao MJC, Prinz M. Macrophages at CNS interfaces: ontogeny and function in health and disease. Nat Rev Neurosci. 2019;20:547–62.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Domenga V, Fardoux P, Lacombe P, Monet M, Maciazek J, Krebs LT, et al. Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev. 2004;18:2730–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morisaki N, Koyama N, Kawano M, Mori S, Umemiya K, Koshikawa T, et al. Human macrophages modulate the phenotype of cultured rabbit aortic smooth muscle cells through secretion of platelet-derived growth factor. Eur J Clin Invest. 1992;22:461–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhu Y, Hojo Y, Ikeda U, Takahashi M, Shimada K. Interaction between monocytes and vascular smooth muscle cells enhances matrix metalloproteinase-1 production. J Cardiovasc Pharm. 2000;36:152–61.

    Article 
    CAS 

    Google Scholar 

  • Mai CL, Tan Z, Xu YN, Zhang JJ, Huang ZH, Wang D, et al. CXCL12-mediated monocyte transmigration into brain perivascular space leads to neuroinflammation and memory deficit in neuropathic pain. Theranostics. 2021;11:1059–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yan P, Kim KW, Xiao Q, Ma X, Czerniewski LR, Liu H, et al. Peripheral monocyte-derived cells counter amyloid plaque pathogenesis in a mouse model of Alzheimer’s disease. J Clin Invest. 2022;132:e152565.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hawkes CA, McLaurin J. Selective targeting of perivascular macrophages for clearance of beta-amyloid in cerebral amyloid angiopathy. Proc Natl Acad Sci USA. 2009;106:1261–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Armulik A, Genove G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21:193–215.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Winkler EA, Sagare AP, Zlokovic BV. The pericyte: a forgotten cell type with important implications for Alzheimer’s disease?. Brain Pathol. 2014;24:371–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lapenna A, De Palma M, Lewis CE. Perivascular macrophages in health and disease. Nat Rev Immunol. 2018;18:689–702.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dore-Duffy P, Owen C, Balabanov R, Murphy S, Beaumont T, Rafols JA. Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc Res. 2000;60:55–69.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Guijarro-Munoz I, Compte M, Alvarez-Cienfuegos A, Alvarez-Vallina L, Sanz L. Lipopolysaccharide activates toll-like receptor 4 (TLR4)-mediated NF-kappaB signaling pathway and proinflammatory response in human pericytes. J Biol Chem. 2014;289:2457–68.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rustenhoven J, Jansson D, Smyth LC, Dragunow M. Brain pericytes as mediators of neuroinflammation. Trends Pharm Sci. 2017;38:291–304.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stephenson EL, Mishra MK, Moussienko D, Laflamme N, Rivest S, Ling CC, Yong VW. Chondroitin sulfate proteoglycans as novel drivers of leucocyte infiltration in multiple sclerosis. Brain. 2018;141:1094–110.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wen W, Cheng J, Tang Y. Brain perivascular macrophages: current understanding and future prospects. Brain. 2024;147:39–55.

    Article 
    PubMed 

    Google Scholar 

  • Kaushik DK, Bhattacharya A, Lozinski BM, Wee Yong V. Pericytes as mediators of infiltration of macrophages in multiple sclerosis. J Neuroinflamm. 2021;18:301.

    Article 
    CAS 

    Google Scholar 

  • Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid b. Sci Transl Med. 2012;4:147ra11.

    Article 

    Google Scholar 

  • Peters ME, Lyketsos CG. The glymphatic system’s role in traumatic brain injury-related neurodegeneration. Mol Psychiatry. 2023;28:2707–15.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang Y, Huang C, Guo Q, Chu H. Aquaporin-4 and cognitive disorders. Aging Dis. 2022;13:61–72.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mestre H, Tithof J, Du T, Song W, Peng W, Sweeney AM, et al. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat Commun. 2018;9:4878.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang X, Khalil RA. Matrix metalloproteinases, vascular remodeling, and vascular disease. Adv Pharm. 2018;81:241–330.

    Article 
    CAS 

    Google Scholar 

  • Wang X, Delle C, Peng W, Pla V, Giannetto M, Kusk P, et al. Age- and glaucoma-induced changes to the ocular glymphatic system. Neurobiol Dis. 2023;188:106322.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Uchikawa H, Uekawa K, Hasegawa Y. Perivascular macrophages in cerebrovascular diseases. Exp Neurol. 2024;374:114680.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Goddery EN, Fain CE, Lipovsky CG, Ayasoufi K, Yokanovich LT, Malo CS, et al. Microglia and perivascular macrophages act as antigen presenting cells to promote CD8 T cell infiltration of the brain. Front Immunol. 2021;12:726421.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaur J, Boyd E, Ding G, Zhang L, Luo H, Li Q, et al. The association between glymphatic system and perivascular macrophages in brain waste clearance. Diagn (Basel). 2024;14:731.

    CAS 

    Google Scholar 

  • Polfliet MM, Goede PH, van Kesteren-Hendrikx EM, van Rooijen N, Dijkstra CD, van den Berg TK. A method for the selective depletion of perivascular and meningeal macrophages in the central nervous system. J Neuroimmunol. 2001;116:188–95.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lehenkari PP, Kellinsalmi M, Napankangas JP, Ylitalo KV, Monkkonen J, Rogers MJ, et al. Further insight into mechanism of action of clodronate: inhibition of mitochondrial ADP/ATP translocase by a nonhydrolyzable, adenine-containing metabolite. Mol Pharm. 2002;61:1255–62.

    Article 
    CAS 

    Google Scholar 

  • Park L, Uekawa K, Garcia-Bonilla L, Koizumi K, Murphy M, Pistik R, et al. Brain perivascular macrophages initiate the neurovascular dysfunction of Alzheimer abeta peptides. Circ Res. 2017;121:258–69.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Enzmann G, Mysiorek C, Gorina R, Cheng YJ, Ghavampour S, Hannocks MJ, et al. The neurovascular unit as a selective barrier to polymorphonuclear granulocyte (PMN) infiltration into the brain after ischemic injury. Acta Neuropathol. 2013;125:395–412.

    Article 
    PubMed 

    Google Scholar 

  • Perez-de-Puig I, Miro-Mur F, Ferrer-Ferrer M, Gelpi E, Pedragosa J, Justicia C, et al. Neutrophil recruitment to the brain in mouse and human ischemic stroke. Acta Neuropathol. 2015;129:239–57.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Polfliet MM, Zwijnenburg PJ, van Furth AM, van der Poll T, Dopp EA, Renardel de Lavalette C, et al. Meningeal and perivascular macrophages of the central nervous system play a protective role during bacterial meningitis. J Immunol. 2001;167:4644–50.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010;37:13–25.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Willis CL, Garwood CJ, Ray DE. A size selective vascular barrier in the rat area postrema formed by perivascular macrophages and the extracellular matrix. Neuroscience. 2007;150:498–509.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • He H, Mack JJ, Guc E, Warren CM, Squadrito ML, Kilarski WW, et al. Perivascular macrophages limit permeability. Arterioscler Thromb Vasc Biol. 2016;36:2203–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Santisteban MM, Ahn SJ, Lane D, Faraco G, Garcia-Bonilla L, Racchumi G, et al. Endothelium-macrophage crosstalk mediates blood-brain barrier dysfunction in hypertension. Hypertension. 2020;76:795–807.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jais A, Solas M, Backes H, Chaurasia B, Kleinridders A, Theurich S, et al. Myeloid-cell-derived VEGF maintains brain glucose uptake and limits cognitive impairment in obesity. Cell. 2016;165:882–95.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee CH, Kim HJ, Lee YS, Kang GM, Lim HS, Lee SH, et al. Hypothalamic macrophage inducible nitric oxide synthase mediates obesity-associated hypothalamic inflammation. Cell Rep. 2018;25:934–46.e5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Turnbull AV, Rivier CL. Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action. Physiol Rev. 1999;79:1–71.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Elmquist JK, Breder CD, Sherin JE, Scammell TE, Hickey WF, Dewitt D, Saper CB. Intravenous lipopolysaccharide induces cyclooxygenase 2-like immunoreactivity in rat brain perivascular microglia and meningeal macrophages. J Comp Neurol. 1997;381:119–29.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Iadecola C. The overlap between neurodegenerative and vascular factors in the pathogenesis of dementia. Acta Neuropathol. 2010;120:287–96.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chan CT, Moore JP, Budzyn K, Guida E, Diep H, Vinh A, et al. Reversal of vascular macrophage accumulation and hypertension by a CCR2 antagonist in deoxycorticosterone/salt-treated mice. Hypertension. 2012;60:1207–12.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Elmarakby AA, Quigley JE, Olearczyk JJ, Sridhar A, Cook AK, Inscho EW, et al. Chemokine receptor 2b inhibition provides renal protection in angiotensin II – salt hypertension. Hypertension. 2007;50:1069–76.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Inagaki T, Fujiwara K, Shinohara Y, Azuma M, Yamazaki R, Mashima K, et al. Perivascular macrophages produce type I collagen around cerebral small vessels under prolonged hypertension in rats. Histochem Cell Biol. 2021;155:503–12.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Corrigendum to: World Stroke Organization (WSO): Global Stroke Fact Sheet 2022. Int J Stroke. 2022;17:478.

  • Schoch HJ, Fischer S, Marti HH. Hypoxia-induced vascular endothelial growth factor expression causes vascular leakage in the brain. Brain. 2002;125:2549–57.

    Article 
    PubMed 

    Google Scholar 

  • Hung SY, Fu WM. Drug candidates in clinical trials for Alzheimer’s disease. J Biomed Sci. 2017;24:47.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Husemann J, Silverstein SC. Expression of scavenger receptor class B, type I, by astrocytes and vascular smooth muscle cells in normal adult mouse and human brain and in Alzheimer’s disease brain. Am J Pathol. 2001;158:825–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Linton MF, Tao H, Linton EF, Yancey PG. SR-BI: A Multifunctional Receptor in Cholesterol Homeostasis and Atherosclerosis. Trends Endocrinol Metab. 2017;28:461–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thanopoulou K, Fragkouli A, Stylianopoulou F, Georgopoulos S. Scavenger receptor class B type I (SR-BI) regulates perivascular macrophages and modifies amyloid pathology in an Alzheimer mouse model. Proc Natl Acad Sci USA. 2010;107:20816–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Attems J, Lauda F, Jellinger KA. Unexpectedly low prevalence of intracerebral hemorrhages in sporadic cerebral amyloid angiopathy: an autopsy study. J Neurol. 2008;255:70–6.

    Article 
    PubMed 

    Google Scholar 

  • Uekawa K, Hattori Y, Ahn SJ, Seo J, Casey N, Anfray A, et al. Border-associated macrophages promote cerebral amyloid angiopathy and cognitive impairment through vascular oxidative stress. Mol Neurodegener. 2023;18:73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Santos J, Pallares I, Ventura S. A glimpse into the structural properties of alpha-synuclein oligomers. Biofactors. 2024;50:439–49.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Choi I, Zhang Y, Seegobin SP, Pruvost M, Wang Q, Purtell K, et al. Microglia clear neuron-released alpha-synuclein via selective autophagy and prevent neurodegeneration. Nat Commun. 2020;11:1386.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang C, Yang T, Liang M, Xie J, Song N. Astrocyte dysfunction in Parkinson’s disease: from the perspectives of transmitted alpha-synuclein and genetic modulation. Transl Neurodegener. 2021;10:39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, et al. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med. 2000;6:916–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM. Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA. 2001;98:8850–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • DeMattos RB, Bales KR, Cummins DJ, Paul SM, Holtzman DM. Brain to plasma amyloid-beta efflux: a measure of brain amyloid burden in a mouse model of Alzheimer’s disease. Science. 2002;295:2264–7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dodart JC, Bales KR, Gannon KS, Greene SJ, DeMattos RB, Mathis C, et al. Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model. Nat Neurosci. 2002;5:452–7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Castellani RJ, Shanes ED, McCord M, Reish NJ, Flanagan ME, Mesulam MM, Jamshidi P. Neuropathology of Anti-Amyloid-beta Immunotherapy: A Case Report. J Alzheimers Dis. 2023;93:803–13.

    Article 
    PubMed 

    Google Scholar 

  • Fuger P, Hefendehl JK, Veeraraghavalu K, Wendeln AC, Schlosser C, Obermuller U, et al. Microglia turnover with aging and in an Alzheimer’s model via long-term in vivo single-cell imaging. Nat Neurosci. 2017;20:1371–6.

    Article 
    PubMed 

    Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308:1314–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ransohoff RM, Perry VH. Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol. 2009;27:119–45.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mrdjen D, Pavlovic A, Hartmann FJ, Schreiner B, Utz SG, Leung BP, et al. High-Dimensional Single-Cell Mapping of Central Nervous System Immune Cells Reveals Distinct Myeloid Subsets in Health, Aging, and Disease. Immunity. 2018;48:380–95.e6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Konishi H, Kobayashi M, Kunisawa T, Imai K, Sayo A, Malissen B, et al. Siglec-H is a microglia-specific marker that discriminates microglia from CNS-associated macrophages and CNS-infiltrating monocytes. Glia. 2017;65:1927–43.

    Article 
    PubMed 

    Google Scholar 

  • Zeisel A, Munoz-Manchado AB, Codeluppi S, Lonnerberg P, La Manno G, Jureus A, et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 2015;347:1138–42.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rajan WD, Wojtas B, Gielniewski B, Miro-Mur F, Pedragosa J, Zawadzka M, et al. Defining molecular identity and fates of CNS-border associated macrophages after ischemic stroke in rodents and humans. Neurobiol Dis. 2020;137:104722.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fabriek BO, Van Haastert ES, Galea I, Polfliet MM, Dopp ED, Van Den Heuvel MM, et al. CD163-positive perivascular macrophages in the human CNS express molecules for antigen recognition and presentation. Glia. 2005;51:297–305.

    Article 
    PubMed 

    Google Scholar 

  • Chinnery HR, Ruitenberg MJ, McMenamin PG. Novel characterization of monocyte-derived cell populations in the meninges and choroid plexus and their rates of replenishment in bone marrow chimeric mice. J Neuropathol Exp Neurol. 2010;69:896–909.

    Article 
    PubMed 

    Google Scholar 

  • Cugurra A, Mamuladze T, Rustenhoven J, Dykstra T, Beroshvili G, Greenberg ZJ, et al. Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. Science. 2021;373:eabf7844.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cui J, Xu H, Lehtinen MK. Macrophages on the margin: choroid plexus immune responses. Trends Neurosci. 2021;44:864–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McMenamin PG, Wealthall RJ, Deverall M, Cooper SJ, Griffin B. Macrophages and dendritic cells in the rat meninges and choroid plexus: three-dimensional localisation by environmental scanning electron microscopy and confocal microscopy. Cell Tissue Res. 2003;313:259–69.

    Article 
    PubMed 

    Google Scholar 

  • Cui J, Shipley FB, Shannon ML, Alturkistani O, Dani N, Webb MD, et al. Inflammation of the embryonic choroid plexus barrier following maternal immune activation. Dev Cell. 2020;55:617–28.e6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dani N, Herbst RH, McCabe C, Green GS, Kaiser K, Head JP, et al. A cellular and spatial map of the choroid plexus across brain ventricles and ages. Cell. 2021;184:3056–74.e21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shipley FB, Dani N, Xu H, Deister C, Cui J, Head JP, et al. Tracking calcium dynamics and immune surveillance at the choroid plexus blood-cerebrospinal fluid interface. Neuron. 2020;108:623–39.e10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *